31 January 2017

Dan Zhao and Simone Fabiano at the Laboratory of Organic Electronics have created a thermoelectric organic transistor. A temperature rise of a single degree is sufficient to cause a detectable current modulation in the transistor.

The results have now been published in Nature Communications.

“We are the first in the world to present a logic circuit, in this case a transistor, that is controlled by a heat signal instead of an electrical signal,” states Professor Xavier Crispin of the Laboratory of Organic Electronics, Linköping University.

Possibilities for new applications

The heat-driven transistor opens the possibility of many new applications such as detecting small temperature differences, and using functional medical dressings in which the healing process can be monitored.

It is also possible to produce circuits controlled by the heat present in infrared light, for use in heat cameras and other applications. The high sensitivity to heat, 100 times greater than traditional thermoelectric materials, means that a single connector from the heat-sensitive electrolyte, which acts as sensor, to the transistor circuit is sufficient. One sensor can be combined with one transistor to create a “smart pixel”.

A matrix of smart pixels can then be used, for example, instead of the sensors that are currently used to detect infrared radiation in heat cameras. With more developments, the new technology can potentially enable a new heat camera in your mobile phone at a low cost, since the materials required are neither expensive, rare nor hazardous.

Thermoelectric electrolyte

The heat-driven transistor builds on research that led to a supercapacitor being produced a year ago, charged by the sun’s rays. In the capacitor, heat is converted to electricity, which can then be stored in the capacitor until it is needed.

The researchers at the Laboratory of Organic Electronics had searched among conducting polymers and produced a liquid electrolyte with a 100 times greater ability to convert a temperature gradient to electric voltage than the electrolytes previously used. The liquid electrolyte consists of ions and conducting polymer molecules. The positively charged ions are small and move rapidly, while the negatively charged polymer molecules are large and heavy. When one side is heated, the small ions move rapidly towards the cold side and a voltage difference arises.

“When we had shown that the capacitor worked, we started to look for other applications of the new electrolyte,” says Xavier Crispin.

Dan Zhao, principal research engineer, and Simone Fabiano, senior lecturer, have shown, after many hours in the laboratory, that it is fully possible to build electronic circuits that are controlled by a heat signal.

Since 2014 the research has been financed by the Knut and Alice Wallenberg Foundation as part of the “Tail of the sun” project.

The article:
Ionic thermoelectric gating organic transistors, Dan Zhao, Simone Fabiano, Magnus Berggren and Xavier Crispin, Linköping University, Campus Norrköping, Nature Communications 2017. DOI 10.1038/ncomms14214

Researchers

Research

More news from LiU

Young woman measures blood sugar level. Diabetes using lancet.

Foundations for type 1 diabetes may already be laid during pregnancy

Researchers have identified a protein pattern that, already at birth, looks markedly different in those who later go on to develop type 1 diabetes. The findings show that a combination of several factors during pregnancy affects disease risk.

A group of robots on the floor.

Cutting‑edge IT and mobile communications research grows

Efficient 6G, advanced robotics and human-machine interaction are some of the themes of the 25 new research projects that have been awarded funding within the ELLIIT initiative. The projects share a total of SEK 255 million over five years.

A truck driving down a highway next to a lush green field.

Higher costs for green hydrogen transport in the Nordics

Green hydrogen produced using solar and wind power would be cheaper to produce at more southerly latitudes than in the Nordic region. This is shown in a study from Linköping University.