Photo of Simone Fabiano

Simone Fabiano

Senior Associate Professor, Head of Unit

Principal Investigator at Organic Nanoelectronics, 
Laboratory of Organic Electronics

Presentation

Simone Fabiano received his MSc degree in Industrial Chemistry from the University of Catania (Italy) in 2008, working on nanostructured materials for organic photovoltaic cells.

In 2012, he earned his PhD in Chemistry from the University of Palermo (Italy) with a work aimed at controlling the molecular packing of organic semiconductors for efficient charge transport in thin film transistors and solar cells. From 2010, he also worked as a visiting PhD student in the group of Prof. Maria Antonietta Loi at the Zernike Institute for Advanced Materials of the University of Groningen (The Netherlands). 

In 2012, he carried out postdoctoral research at Linköping University (Sweden) with Prof. Magnus Berggren, and in 2016 he joined the group of Prof. Antonio Facchetti and Prof. Tobin J. Marks at Northwestern University (USA), where he worked as a Marie Curie Fellow and a VINNEMER Fellow until December 2017.
 
Simone Fabiano is now an Associate Professor at the Department of Science and Technology at Linköping University, where he guides the research activities of the Organic Nanoelectronics group. Since October 2020, he is also a Docent in Applied Physics.

His research interests include the development of organic conductors and mixed ion-electron conductors for printed electronics and neuromorphic computing.

Simone Fabiano i RenrummetSimone Fabiano while working at Clean Room, Campus Norrköping.
Photo credit: Thor Balkhed

Publications

2023

Elin Berggren, Yi-Chen Weng, Qifan Li, Chiyuan Yang, Fredrik O. L. Johansson, Ute B. Cappel, Magnus Berggren, Simone Fabiano, Andreas Lindblad (2023) Charge Transfer in the P(g<sub>4</sub>2T-T):BBL Organic Polymer Heterojunction Measured with Core-Hole Clock Spectroscopy The Journal of Physical Chemistry C, Vol. 127, p. 23733-23742 Continue to DOI
P. Gkoupidenis, Y. Zhang, H. Kleemann, H. Ling, F. Santoro, Simone Fabiano, A. Salleo, Y. van de Burgt (2023) Organic mixed conductors for bioinspired electronics NATURE REVIEWS MATERIALS Continue to DOI
Tiefeng Liu, Johanna Heimonen, Qilun Zhang, Chiyuan Yang, Jun-Da Huang, Hanyan Wu, Marc-Antoine Stoeckel, Tom van der Pol, Yuxuan Li, Sang Young Jeong, Adam Marks, Xin-Yi Wang, Yuttapoom Puttisong, Asaminew Yerango Shimolo, Xianjie Liu, Silan Zhang, Qifan Li, Matteo Massetti, Weimin Chen, Han Young Woo, Jian Pei, Iain McCulloch, Feng Gao, Mats Fahlman, Renee Kroon, Simone Fabiano (2023) Ground-state electron transfer in all-polymer donor:acceptor blends enables aqueous processing of water-insoluble conjugated polymers Nature Communications, Vol. 14, Article 8454 Continue to DOI
Sozan Darabi, Chiyuan Yang, Zerui Li, Jun-Da Huang, Michael Hummel, Herbert Sixta, Simone Fabiano, Christian Mueller (2023) Polymer-Based n-Type Yarn for Organic Thermoelectric Textiles Advanced Electronic Materials, Article 2201235 Continue to DOI
Simone Fabiano, Lucas Flagg, Tania C. Hidalgo Castillo, Sahika Inal, Loren G. Kaake, Laure V. Kayser, Scott T. Keene, Sabine Ludwigs, Christian Muller, Brett M. Savoie, Bjoern Luessem, Jodie L. Lutkenhaus, Micaela Matta, Dilara Meli, Shrayesh N. Patel, Bryan D. Paulsen, Jonathan Rivnay, Jokubas Surgailis (2023) On the fundamentals of organic mixed ionic/electronic conductors Journal of Materials Chemistry C, Vol. 11, p. 14527-14539 Continue to DOI

News

Person in labcoat and gloves pours a blue liquid onto a glass surface.

New sustainable method for creating organic semiconductors

Researchers at LiU have developed a new, more environmentally friendly way to create conductive inks for use in organic electronics. The findings pave the way for future sustainable technology.

Major investment in new equipment for materials research

The Wallenberg Initiative Materials Science for Sustainability, WISE, donates SEK 44 million to Linköping University for new scientific equipment that will contribute to cutting-edge materials research.

Man on balkony (Simone Fabiano).

Developing soft electronic devices mimicking the brain

Simone Fabiano, senior associate professor at the Laboratory of Organic Electronics, has been granted SEK 23 million from the ERC to develop a new type of soft electronic device inspired by the human brain.

Publications

2023

Elin Berggren, Yi-Chen Weng, Qifan Li, Chiyuan Yang, Fredrik O. L. Johansson, Ute B. Cappel, Magnus Berggren, Simone Fabiano, Andreas Lindblad (2023) Charge Transfer in the P(g<sub>4</sub>2T-T):BBL Organic Polymer Heterojunction Measured with Core-Hole Clock Spectroscopy The Journal of Physical Chemistry C, Vol. 127, p. 23733-23742 Continue to DOI
P. Gkoupidenis, Y. Zhang, H. Kleemann, H. Ling, F. Santoro, Simone Fabiano, A. Salleo, Y. van de Burgt (2023) Organic mixed conductors for bioinspired electronics NATURE REVIEWS MATERIALS Continue to DOI
Tiefeng Liu, Johanna Heimonen, Qilun Zhang, Chiyuan Yang, Jun-Da Huang, Hanyan Wu, Marc-Antoine Stoeckel, Tom van der Pol, Yuxuan Li, Sang Young Jeong, Adam Marks, Xin-Yi Wang, Yuttapoom Puttisong, Asaminew Yerango Shimolo, Xianjie Liu, Silan Zhang, Qifan Li, Matteo Massetti, Weimin Chen, Han Young Woo, Jian Pei, Iain McCulloch, Feng Gao, Mats Fahlman, Renee Kroon, Simone Fabiano (2023) Ground-state electron transfer in all-polymer donor:acceptor blends enables aqueous processing of water-insoluble conjugated polymers Nature Communications, Vol. 14, Article 8454 Continue to DOI
Sozan Darabi, Chiyuan Yang, Zerui Li, Jun-Da Huang, Michael Hummel, Herbert Sixta, Simone Fabiano, Christian Mueller (2023) Polymer-Based n-Type Yarn for Organic Thermoelectric Textiles Advanced Electronic Materials, Article 2201235 Continue to DOI
Simone Fabiano, Lucas Flagg, Tania C. Hidalgo Castillo, Sahika Inal, Loren G. Kaake, Laure V. Kayser, Scott T. Keene, Sabine Ludwigs, Christian Muller, Brett M. Savoie, Bjoern Luessem, Jodie L. Lutkenhaus, Micaela Matta, Dilara Meli, Shrayesh N. Patel, Bryan D. Paulsen, Jonathan Rivnay, Jokubas Surgailis (2023) On the fundamentals of organic mixed ionic/electronic conductors Journal of Materials Chemistry C, Vol. 11, p. 14527-14539 Continue to DOI