09 March 2020

A research group led by Simone Fabiano at the Laboratory of Organic Electronics, has created an organic material with superb conductivity that doesn’t need to be doped. They have achieved this by mixing two polymers with different properties.

Closeup of two pipettes, one is dripping blue ink and the other one red ink. The ink is forming a two colored puddle.
The Polymer ink. The blue one is the donor polymer solution, while the red one is the acceptor polymer solution. Both pristine polymers are non-conductive because there are no free moving charges inside the polymers. When they meet each other, electrons from the donor polymer will automatically be transferred to the acceptor polymer, leaving free moving charges on both polymers. Photographer: THOR BALKHED
In order to increase the conductivity of polymers, and in this way obtain higher efficiency in organic solar cells, light-emitting diodes and other bioelectronic applications, researchers have until now doped the material with various substances. Typically, this is done by either removing an electron or donating it to the semiconductor material with a dopant molecule, a strategy that increases the number of charges and thereby the conductivity of the material.

“We normally dope our organic polymers to improve their conductivity and the device performance. The process is stable for a while, but the material degenerates and the substances we use as doping agents can eventually leach out. This is something that we want to avoid at any cost in, for example, bioelectronic applications, where the organic electronic components can give huge benefits in wearable electronics and as implants in the body”, says Associate Professor Simone Fabiano, head of the Organic Nanoelectronics group within the Laboratory of Organic Electronics at Linköping University.

A perfect match

The research group, with scientists from five countries, has now succeeded in combining the two polymers, producing a conducting ink that does not require any doping to conduct electricity. The energy levels of the two materials perfectly match, such that charges are spontaneously transferred from one polymer to the other.
The results have been published in Nature Materials.

The phenomenon of spontaneous charge transfer has been demonstrated before, but only for single crystals on a laboratory scale. No one has shown anything that could be used at an industrial scale. Polymers consist of large and stable molecules that are easy to deposit from solution, and that’s why they are well suited for large-scale use as ink in printed electronics”, says Simone Fabiano.

Polymers are simple and relatively cheap materials, and are commercially available. No foreign substances leach out from the new polymer mixture. It remains stable for a long time and withstands high temperatures. These properties are important for energy harvesting/storage devices as well as wearable electronics.

“Since they are free of doping agents, they are stable over time and can be used in demanding applications. The discovery of this phenomenon opens completely new possibilities for improving the performance of light-emitting diodes and solar cells. This is also the case for other thermoelectric applications, and not least for research within wearable and close-body electronics”, says Simone Fabiano.

A major new chapter in the field

“We have involved scientists at Linköping University and Chalmers University of Technology, and experts in the US, Germany, Japan, and China. It has been a really great experience to lead this work, which is a large and important step in the field”, he says.

Principal funding for the research has come from the Swedish Research Council and the Wallenberg Wood Science Center. It has also been conducted within the framework for the strategic initiative in advanced functional materials, AFM, at Linköping University.

“Fundamentally, doping in conducting polymers, generating high electrical conductivity, has so far only been achieved by combining a non-conducting dopant with a conducting polymer. Now, for the first time, the combination of two conducting polymers renders a composite system that is highly stable and highly conducting. This discovery defines a major new chapter in the field of conducting polymers, and will spark many novel applications and interest world-wide”, says professor Magnus Berggren, director of Laboratory of Organic Electronics at Linköping University.

Ground-state electron transfer in all-polymer donor-acceptor heterojunctions,
Kai Xu, Hengda Sun, Tero-Petri Ruoko, Gang Wang, Renee Kroon, Nagesh B. Kolhe, Yuttapoom Puttisong, Xianjie Liu, Daniele Fazzi, Koki Shibata, Chi-Yuan Yang, Ning Sun, Gustav Persson, Andrew B. Yankovich, Eva Olsson, Hiroyuki Yoshida, Weimin M. Chen, Mats Fahlman, Martijn Kemerink, Samson A. Jenekhe, Christian Müller, Magnus Berggren, Simone Fabiano. Nature Materials 2020, doi 10.1038/s41563-020-0618-7

Translated by George Farrants

More research news from LOE

Iontronic pump in thin blood vessels.

More effective cancer treatment with iontronic pump

When low doses of cancer drugs are administered continuously near malignant brain tumours using so-called iontronic technology, cancer cell growth drastically decreases. This is demonstrated in experiments with bird embryos.

Sheet of glass with droplet.

Next-generation sustainable electronics are doped with air

Researchers at LiU have developed a new method where organic semiconductors can become more conductive with the help of air as a dopant. The study is a significant step towards future sustainable organic semiconductors.

Battery om fingertip.

Eco-friendly and affordable battery for low-income countries

A battery made from zinc and lignin that can be used over 8000 times. This has been developed by researchers at LiU with a vision to provide a cheap and sustainable battery solution for countries where access to electricity is limited.

Research

Latest news from LiU

Florian Trybel

The collaboration pushing back the boundaries of physics

Theoretician Florian Trybel has an irreplaceable role in creating new materials. Together with his experimental research colleague in Scotland he aims to expand the possibilities of materials in extreme conditions.

Kaiqian Wang.

Discovery about pain signalling may contribute to better treatment

LiU researchers have pinpointed the exact location of a specific protein fine-tuning the strength of pain signals. The knowledge can be used to develop drugs for chronic pain that are more effective and have fewer side effects.

Associate professor Jonathan Josefsson against a grey sky.

Unequal conditions for young people at UN climate summits

Today, young people can participate in major UN climate conferences. But inequality and bureaucracy make this impossible for many. This is the conclusion of a study carried out at Linköping University.