25 March 2019

Cellulose soaked in a carefully designed polymer mixture acts as a sensor to measure pressure, temperature and humidity – at the same time! The measurements are completely independent of each other. The sensor may be highly significant in fields such as robotics, healthcare and security.

Closeup on a man who is holding a sensor in front of one of his eyes. He is wearing a blue rubber glove.
Shaobo Han with the sensor that can measure pressure, temperature and humidity - at the same time. Photo: Thor Balkhed Photographer: Thor Balkhed
The ability to measure pressure, temperature and humidity is important in many applications, such as monitoring patients at home, robotics, electronic skin, functional textiles, surveillance and security, to name just a few. Research until now has targeted integrating the different sensors into the same circuit, and this has presented several technical challenges, not least concerning the interface to the user.

Scientists in the Laboratory of Organic Electronics at Linköping University have now, under the leadership of Professor Xavier Crispin, successfully combined all three measurements into a single sensor.

Aerogel

This has been made possible by the development of an elastic aerogel of polymers that conducts both ions and electrons, and subsequent exploitation of the thermoelectric effect. Photo credit Thor BalkhedA thermoelectric material is one in which electrons move from the cold side of the material towards the warm side, and in this way create a voltage difference.

When nanofibres of cellulose are mixed with the conducting polymer PEDOT:PSS in water and the mixture is freeze-dried under vacuum, the resulting material has the same structure as a washing sponge, an aerogel. Adding a substance known as Photo credit Thor Balkhedpolysilane causes the sponge to become elastic. Applying an electrical potential across the material gives a linear current increase, typical of any resistor. But when the material is subject to a pressure, its resistance falls and electrons flow more readily through it.

Since the material is thermoelectric, it is also possible to measure temperature changes: the larger the temperature difference between the warm and cold sides, the higher the voltage developed. The humidity affects how rapidly the ions move from the warm side to the cold one. If the humidity is zero, no ions are transported.

”What is new is that we can distinguish between the thermoelectric response of the electrons (giving the temperature gradient) and that of the ions (giving the humidity level) by following the electrical signal versus time. That is because the two responses occur at different speeds”, says Xavier Crispin, professor in the Laboratory of Organic Electronics and principal author of the article published in Advanced Science.

“This means that we can measure three parameters with one material, without the different measurements being coupled”, he says.

A lot of possible applications

Shaobo Han, doctoral student, and Senior Lecturer Simone Fabiano at the Laboratory of Organic Electronics, have also found a way to separate the three signals from each other, such that each can be simply read individually.

“Our unique sensor also prepares the way for the internet of things, and brings lower complexity and lower production costs. This is an advantage not least in the security industry. A further possible application is placing sensors into packages with sensitive goods”, says Simone Fabiano.

Financiers of the research include the Knut and Alice Wallenberg Foundation (the Tail of the Sun project), the Wallenberg Wood Science Center, the Vinnova Digital Cellulose Center, and the government’s strategic investment into advanced functional materials at Linköping University, AFM.

The article: A multiparameter Pressure-Temperature-Humidity Sensor based on Mixed Ionic-Electronic Cellulose Aerogels, Shaobo Han, Naveed Ul Hassan Alvi, Lars Granlöf, Hjalmar Granberg, Magnus Berggren, Simone Fabiano and Xavier Crispin, Advanced Science 2019. DOI 10.1002/advs.201802128

Translated by George Farrants

Contact

More news from LOE

Iontronic pump in thin blood vessels.

More effective cancer treatment with iontronic pump

When low doses of cancer drugs are administered continuously near malignant brain tumours using so-called iontronic technology, cancer cell growth drastically decreases. This is demonstrated in experiments with bird embryos.

Sheet of glass with droplet.

Next-generation sustainable electronics are doped with air

Researchers at LiU have developed a new method where organic semiconductors can become more conductive with the help of air as a dopant. The study is a significant step towards future sustainable organic semiconductors.

Battery om fingertip.

Eco-friendly and affordable battery for low-income countries

A battery made from zinc and lignin that can be used over 8000 times. This has been developed by researchers at LiU with a vision to provide a cheap and sustainable battery solution for countries where access to electricity is limited.

Research

Latest news from LiU

Server room and data on black background.

Machine Psychology – a bridge to general AI

AI that is as intelligent as humans may become possible thanks to psychological learning models, combined with certain types of AI. This is the conclusion of Robert Johansson, who in his dissertation has developed the concept of Machine Psychology.

Research for a sustainable future awarded almost SEK 20 million grant

An unexpected collaboration between materials science and behavioural science. The development of better and more useful services to tackle climate change. Two projects at LiU are to receive support from the Marianne and Marcus Wallenberg Foundation.

Innovative idea for more effective cancer treatments rewarded

Lisa Menacher has been awarded the 2024 Christer Gilén Scholarship in statistics and machine learning for her master’s thesis. She utilised machine learning in an effort to make the selection of cancer treatments more effective.