11 December 2023

Researchers at LiU have examined the brains of 16 patients previously hospitalised for COVID-19 with persisting symptoms. They have found differences in brain tissue structure between patients with persisting symptoms after COVID-19 and healthy people. Their findings can bring insights into the underlying mechanisms of persisting neurological problems after COVID-19.

Researchers discussing in front of a big screen displaying an image of a brain.Ida Blystad and her colleagues examine the brain using MRI. Photo credit Emma Busk Winquist Several previous studies of persisting problems after COVID have involved MRI brain scanning. Although researchers have found differences compared with healthy brains, these differences are not specific to COVID-19.

Headshot och woman with blonde hair.Ida Blystad.

“It can be frustrating for me as a doctor when I understand that the patients have problems, but I can’t find an explanation because there’s nothing in the MRI scan to explain it. To me, this underlines the importance of trying other examination technologies to understand what’s happening in the brain in patients with persisting symptoms after COVID-19,” says Ida Blystad, neuroradiologist in the Department of Radiology at Linköping University Hospital and researcher affiliated with the Department of Health, Medicine and Caring Sciences at Linköping University and the Centre for Medical Image Science and Visualization (CMIV).

In their current study, published in the journal Brain Communications, the researchers have therefore added a new type of MR imaging called advanced diffusion MRI. They were particularly interested in the brain’s white matter. This consists mainly of nerve axons and is very important for transporting signals between the different parts of the brain and the rest of the body.Headshot of a young man.Deneb Boito, PhD student. Photo credit Magnus Johansson

“Diffusion MRI is a very sensitive technology that allows changes in how the nerve axons are organised to be detected. This is one of the reasons why we wanted to use diffusion MRI to study the effects of COVID-19 on the brain that other imaging technologies might not pick up,” says Deneb Boito, doctoral student at the Department of Biomedical Engineering at Linköping University.

Water molecules reveal neural pathways

To get an idea of what diffusion MRI is, we can imagine a big city at night. Car headlights and rear lights shine like red and white strings of pearls on the most trafficked roads. We cannot see the road itself, but we understand that it is there, as the cars can easily move about right there. Similarly, doctors and researchers can get an insight into how the brain is constructed on a microscopic level through diffusion MRI. This technology builds on the fact that there is water everywhere in the brain moving in the tissue according to the law of least resistance. Water molecules move more easily along the neural pathways. By measuring the movement of water molecules through the neural pathways, researchers can indirectly infer the structure of neural pathways, just as we can indirectly understand that there is a motorway where there are many cars driving.A woman preparing a person for examination with magnetic resonance tomography.The MRI scans were performed at the Center for Medical Image Science and Visualization in Linköping. Photo credit Magnus Johansson

Healthcare usages of diffusion MRI include diagnosing stroke and planning brain surgery. In their current study, the researchers used a more advanced version of diffusion MRI. They examined 16 men who had been hospitalised for severe COVID-19 and who are participating in the Linköping COVID-19 Study (LinCos) at the Department of Rehabilitation Medicine in Linköping. They still had persisting symptoms after seven months. This group was compared with a group of healthy individuals without post-COVID symptoms who had not been hospitalised for COVID. The participants’ brains were examined with both conventional MRI and diffusion MRI.

“The two groups differ when it comes to brain white matter structure. This can be one of the causes of the neurological problems experienced by the group that had suffered from severe COVID-19. It’s a result that’s in line with other studies that have shown changes to the brain’s white matter.

However, having examined only a small group of patients, we are cautious about drawing any major conclusions. With this technology, we’re not measuring the function of the brain, but its microstructure. To me, these findings are a sign that we must investigate long-term effects of COVID-19 in the brain using more advanced MRI technology than conventional MRI,” says Ida Blystad.

Several questions remain

There are several issues that the researchers want to study further. It appears, for instance, that white matter in different parts of the brain is affected in different ways, although it is too early to draw any conclusions as to what these differences mean. An upcoming study will investigate whether changes detected with diffusion MRI are in any way connected to brain activity, and how different parts of the brain communicate with each other through the brain white matter in patients suffering from post-COVID fatigue.

Another question is what happens over time. The MRI scan provides an image of the brain at that particular moment. As the participants were examined on one occasion only, it is not possible to know whether the differences between the two groups will disappear over time or whether they are permanent.

This research was funded by, among others, the Analytic Imaging Diagnostic Arena (AIDA), the ITEA/Vinnova project ASSIST, and the Wallenberg Center for Molecular Medicine at Linköping University.

Article: MRI with generalized diffusion encoding reveals damaged white matter in patients previously hospitalized for COVID-19 and with persisting symptoms at follow-up, (2023), Deneb Boito, Anders Eklund, Anders Tisell, Richard Levi, Evren Özarslan and Ida Blystad, Brain Communications Volume 5 Issue 6 2023, published online October 22 2023, doi: 10.1093/braincomms/fcad284 

First MRI article from the LinCos study: Brain MRI and neuropsychological findings at long-term follow-up after COVID-19 hospitalisation: an observational cohort study, Hellgren L, Birberg Thornberg U, Samuelsson K, Levi R, Divanoglou A, Blystad I, BMJ Open 2021 Oct 27;11(10):e055164. doi: 10.1136/bmjopen-2021-055164

Translation by Anneli Mosell

Contact

Centre for Medical Image Science and Visualization

Latest news from LiU

Two men and a woman talk in front of a screen

Machine learning can give the climate a chance

Machine learning can help us discover new patterns and better tackle the climate crisis. Researchers from all over the world meet at Linköping University with the goal of finding and deepening collaborations in this area.

Sofia Nyström och Henrik Nordvall in front of a window that reflects the blue sky.

New course takes the UFO issue seriously

UFO – from tin foil hat to research topic. This is the name of a single-subject course that starts in the spring 2025 at LiU. It will approach the UFO issue in a serious way while looking at the question of what constitutes knowledge and truth.

Four female medical students enjoying the sun, study location Jönköping.

The medical programme at LiU wins award for student engagement

The medical programme at Linköping University (LiU) has won an international accreditation for student engagement and participation in shaping the programme.