26 November 2018

Researchers at the Laboratory of Organic Electronics, Campus Norrköping, have developed a method that increases the signal strength from microbial electrochemical cells by up to twenty times. The secret is a film with an embedded bacterium: Shewanella oneidensis.

Gábor Méhes
Gábor Méhes Photographer: Thor Balkhed
Adding bacteria to electrochemical systems is often an environmentally sensitive means to convert chemical energy to electricity. Applications include water purification, bioelectronics, biosensors, and for the harvesting and storage of energy in fuel cells. One problem that miniaturisation of the processes has encountered is that a high signal strength requires large electrodes and a large volume of liquid.

Researchers at Linköping University, together with colleagues at the Lawrence Berkeley National Laboratory in Berkeley, California, USA, have now developed a method in which they embed the electroactive bacterium Shewanella oneidensis into PEDOT:PSS, an electrically conducting polymer, on a substrate of carbon felt.

MCBF

The researchers call the result a "multilayer conductive bacterial-composite film", abbreviated as MCBF. Microscopic analysis of the film shows an interleaved structure of bacteria and conducting polymers that can be up to 80 µm thick, much thicker than it can be without this specific technique.

“Our experiments show that more than 90% of the bacteria are viable, and that the MCBF increases the flow of electrons in the external circuit. When our film is used as anode in microbial electrochemical cells, the current is 20 times higher than it is when using unmodified anodes, and remains so for at least several days”, says Gábor Méhes, researcher at Linköping University and one of the lead authors of the scientific article recently published in Scientific Reports.

Previous work has tested, among other things, carbon nanotubes to increase the surface area at the anode, but the results were poor.

The possibility to couple biological processes with readable electrical signals is also valuable, for example for environmental sensors which require rapid response times, low energy consumption, and the ability to use many different receptors. Researchers have recently demonstrated how to use Shewanella oneidensis to produce electrical currents in Daniel Simon, forskningsledare inom organisk bioelektronik, LOEDaniel Simon Photo credit Thor Balkhedresponse to arsenic, arabinose (a type of sugar) and organic acids, among others.

Living electrode

“This technology represents a type of “living electrode” where the electrode material and the bacteria are amalgamated into a single electronic biofilm. As we discover more about the essential role that bacteria play in our own health and wellness, such living electrodes will likely become versatile and adaptable tools for developing new forms of bioelectronic technologies and therapies”, says Daniel Simon, principal investigator in Organic Bioelectronics at the Laboratory of Organic Electronics.

The article: PEDOT:PSS-based Multilayer Bacterial-Composite Films for Bioelectronics, Tom J. Zajdel, Moshe Baruch, Gábor Méhes, Eleni Stavrinidou, Magnus Berggren, Michel M. Maharbiz, Daniel T. Simon & Caroline M. Ajo-Franklin. Scientific Reports 8, 2018. DOI 10.1038/s41598-018-33521-9

Translation George Farrants

Contact

LOE

Latest news from LiU

Server room and data on black background.

Machine Psychology – a bridge to general AI

AI that is as intelligent as humans may become possible thanks to psychological learning models, combined with certain types of AI. This is the conclusion of Robert Johansson, who in his dissertation has developed the concept of Machine Psychology.

Research for a sustainable future awarded almost SEK 20 million grant

An unexpected collaboration between materials science and behavioural science. The development of better and more useful services to tackle climate change. Two projects at LiU are to receive support from the Marianne and Marcus Wallenberg Foundation.

Innovative idea for more effective cancer treatments rewarded

Lisa Menacher has been awarded the 2024 Christer Gilén Scholarship in statistics and machine learning for her master’s thesis. She utilised machine learning in an effort to make the selection of cancer treatments more effective.