04 September 2020

The Center for Medical Image Science and Visualization (CMIV) is first in the world to install a completely new type of computer tomograph (CT scanner) in a clinical environment. It provides considerably higher resolution and gives significantly smaller radiation doses to patients than previous machines.

Head of a lion in the new scanner
A lion’s head imaged in the new photon-counting CT scanner. Photo credit CMIV.
“We are incredibly happy and proud to be given this opportunity, in competition with all the large universities in the world. It means a great deal to us: it’s a major step forward for research and in the long term also for our patients”, says Anders Persson, professor of medical imaging science and director of CMIV.

The new CT scanner is manufactured by the German company Siemens, whose management and scientific advisory council have decided to place the machine at Linköping University. The new scanner is unique, only three prototypes have been built. It will be used in research and it will not be commercially introduced in this form.

“This is a completely new technique that has been under testing for several years at the Mayo Clinic in Rochester, Minnesota, USA. Another CT that uses the new technique will be installed also there, and we have extensive research collaboration with the clinic”, says Anders Persson.

20 years of research

In currently available CT scanners, X-rays are emitted in a fan-like bundle, determine the degree to which the radiation is attenuated in the patient. The scanner rotates at four revolutions per second and the images are subsequently combined pixel for pixel to form a three-dimensional image of organs and tissue. The technology, however, sets a limit to how high a resolution can be obtained.

“The conventional technology used today gives a resolution of 0.35 mm at most, in certain parts of the body. This is not sufficient when we want to look at, for example, the walls of the coronary arteries”, says Anders Persson.

For 20 years, researchers have been seeking a technique that gives higher resolution. The new scanner at CMIV has a photon counter that measures the energy of each individual X-ray photon. It is the first in the world to be installed at a clinic with diagnostic operations.

Great benefit to the patients

“We can measure the energy of each individual X-ray photon, which means that we can measure the spectrum in different tissues and identify the elements present. We achieve a very high resolution with an extremely low radiation dose, which is a great benefit to the patients. We hope that we will be able to use the machine in daily clinical operations within a few years”, says Anders Persson.

The researchers now plan to investigate the performance of the new scanner in projects that will look at ligaments, coronary arteries, osteoporosis, lesions in the liver, and for investigations of the pancreas, brain and auditory bones. Many other important applications await. Most of the work will be carried out in collaboration with the Mayo Clinic.

Professor Kajsa Uvdal, in collaboration with Anders Persson and others, was awarded nearly SEK 18 million from the Swedish Research Council in December 2019 for a project investigating the body’s endogenous molecular contrast agents. This interdisciplinary project will use the new scanner.

Translated by George Farrants

Reseach

Latest news from LiU

Josefina Syssner – Professor visiting academia

In her teens, Josefina Syssner wanted to be a cartoonist. She had no intention of studying at university. A few decades later, she is a professor  with a specific eye on the parts of Sweden that are losing population year after year.

How the nervous system distinguishes social touch

Two types of neurons in the skin may be particularly important for how the brain interprets social contact between people. Knowledge of how the nervous system processes social touch is important in order to develop ways to restore sensation.

Researcher in lab coat holds blue solar cell with tweezers.

How non-toxic and efficient solar cells can be produced

Large-scale production of organic solar cells with high efficiency and minimal environmental impact. This can now be made possible through a new design principle developed at Linköping University.