27 July 2023

What happens inside the carnivorous plant Venus Flytrap when it catches an insect? New technology has led to discoveries about the electrical signalling that causes the trap to snap shut. Bioelectronic technology enables advanced research into how plants react to their surroundings, and to stress.

Abdul Manan Dar and Eleni Stavrinidou.
Abdul MananDar and Eleni Stavrinidou demonstrate how the multi-electrode array technology can be used to examine the emergence and propagation of the electrical signal in a Venus Flytrap. Photographer: Thor Balkhed

Most people know that the nervous system in humans and other animals sends electric impulses. But do plants also have electrical signals even though they lack a nervous system? Yes, plants have electrical signals that are generated in response to touch and stress factors, such as wounds caused by herbivores and attacks on their roots. As opposed to animals, who can move out of the way, plants must cope with stress factors where they grow.

Venus fly trap with measuring device.The newly developed measuring device consists of a film with many electrodes in it, so thin that it can follow the curvature of the plant´s lobes. It allows researchers to measure the electrical signal in the lobe. Photo credit Thor Balkhed “There is currently a great need for developing plants that are more stress resistant, for us to be able to grow food and have healthy forests also in the future. That’s why it’s important that we understand how plants respond to stress, and I think that this new technology may contribute in this area of research.” says Eleni Stavrinidou, associate professor in the Department of Science and Technology at Linköping University, LiU and leader of the Electronic Plants group.

It turns out that in some plants electrical signals are correlated with rapid movements. The carnivorous plant Venus Flytrap (Dionaea muscipula) is used by researchers as a model system for fast electrical signalling in plants.

Saving energy

The inner side of the Venus Flytrap trap has small sensory hairs. The bending of a hair, for example by an insect, may cause the trap to snap shut. The animals caught are then broken down by an enzyme in the trap, and the plant absorbs the nutrients. But for the trap to close, the sensory hairs need to be touched twice within about 30 seconds. This way, the plant can save energy by not snapping shut every time a hair is stimulated by things other than potential prey.

Abdul Manan Dar examines the venus fly trap. Photo credit Thor Balkhed Electrical signalling in living organisms is based on a difference in voltage between the inside of cells and the outside environment. This difference in voltage is created when ions, i.e. electrically charged atoms, are moved between the inside and the outside of the cell. When a signal is triggered – for instance by mechanical stimulation in the form of bending a sensory hair – ions flow very fast through the cell membrane. The rapid change in voltage gives rise to an impulse that is propagated.

There is ample knowledge about how nerve impulses function in humans and other animals. But when it comes to plants, which do not have a nervous system, a lot remains to be discovered.

 New technology

In their study, the researchers demonstrate a multi-electrode array technology that is used to examine the emergence and propagation of the electrical signal in a Venus Flytrap. This new technology was developed by researchers at Linköping University in collaboration with researchers from Columbia University, who use this technology for neuroscience studies in animals.

Venus fly trap Photo credit Thor Balkhed The newly developed measuring device consists of a very thin film with electrodes in it. As it is roughly as thin as plastic wrap used for covering food, it follows the curvature of the outside of the plant’s lobes. The researchers poked a sensory hair and, using around 30 electrodes, measured the signal in the lobe. They also filmed the plant’s movements, to be able to correlate the electrical signal with the closure of the Venus Flytrap.

In previous research most often only one measuring point was used, which did not allow for pinpointing the origin of the signal, nor its directions of propagation.

“We can now say with certainty that the electrical signal originates in the sensory hairs of the Venus Flytrap. With our technology, we can also see that the signal mainly spreads radially from the hair, without any clear direction,” says Eleni Stavrinidou.

Possibilities for new discoveries

The new measuring technology also lets the researchers discover new information.

“As we could measure signals from the entire trap, we see that signals are sometimes spontaneous and come from sensory hairs that were not stimulated. This is very interesting, and we don’t know yet why this happens or what the function is. One of the most important aspects of this study is that we show that bioelectronic technologies, which are extensively used in biomedical research, can be applied to plant physiology research as well, therefore opening possibilities for new discoveries” says Eleni Stavrinidou.

The research has received funding from the Swedish Foundation for Strategic Research, the EU Horizon 2020 Research and Innovation Programme, and the Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials (AFM) at Linköping University.

The article: Plant electrophysiology with conformable organic electronics: Deciphering the propagation of Venus flytrap action potentials, Adam Armada-Moreira, Abdul Manan Dar, Zifang Zhao, Claudia Cea, Jennifer Gelinas, Magnus Berggren, Alex Costa, Dion Khodagholy and Eleni Stavrinidou, Science Advances, published online 26 July 2023, doi: 10.1126/sciadv.adh4443

Watch the Venus Flytrap snap shut

Meet the frustrated optimist

Björn-Ola Linnér intended to be a social studies teacher. Instead, he became a climate researcher. He had never imagined an academic career. Yet, he became a professor at the Department of Thematic studies - Environmental Change in Linköping and, as a researcher, plays an active role in the environmental debate.

Further reading: Björn-Ola Linnér: I am a frustrated optimist

Research

Oranisation

Latest news from LiU

Florian Trybel

The collaboration pushing back the boundaries of physics

Theoretician Florian Trybel has an irreplaceable role in creating new materials. Together with his experimental research colleague in Scotland he aims to expand the possibilities of materials in extreme conditions.

Kaiqian Wang.

Discovery about pain signalling may contribute to better treatment

LiU researchers have pinpointed the exact location of a specific protein fine-tuning the strength of pain signals. The knowledge can be used to develop drugs for chronic pain that are more effective and have fewer side effects.

Associate professor Jonathan Josefsson against a grey sky.

Unequal conditions for young people at UN climate summits

Today, young people can participate in major UN climate conferences. But inequality and bureaucracy make this impossible for many. This is the conclusion of a study carried out at Linköping University.