29 January 2024

Research synergy from different fields, research institutes and countries has resulted in the discovery of near-unbreakable materials. These materials are long-sought after polymeric carbon nitrides predicted to rival the hardness of diamond, while showing a wide range of further properties with possible applications in a broad range of fields.

center of one of the diamonds from the diamond anvil cell pressed against the sample after decompression showing “break/indent” in the diamond with the sample, which indicates that the sample is at least of similar hardness
Experimental evidence of the superhardness of the C3N4 polymorphs, which indented the diamond anvils’ surface.

“The multi-functionality of these materials is as important as their predicted hardness, which may lead to their application in fields where diamond doesn’t offer desired combinations of properties”, says Florian Trybel, assistant professor at Linköping University, part of the discovery team and co-author to the article. “At the moment, the synthesis pressures and temperatures of these materials are too high to produce large quantities efficiently. Theoretical simulations will play an important role in predicting new synthesis pathways at less extreme pressure and temperature conditions. This will enable us to further investigate their outstanding properties and move towards industrially relevant scales.”, he adds.
 
The researchers stress that the international collaboration  — led by experimentalists from the University of Edinburgh and the University of Bayreuth, as well as theorists from the Theoretical physics division at Linköping University — with diverse backgrounds and scientific fields was the key to a successful discovery. The article resulting from this discovery has been a success in its own right, receiving much attention, see Altmetric – Synthesis of Ultra‐Incompressible and Recoverable Carbon Nitrides Featuring CN4 Tetrahedra.
 
ArticleSynthesis of Ultra-Incompressible and Recoverable Carbon Nitrides Featuring CN4 Tetrahedra; Dominique Laniel, Florian Trybel, Andrey Aslandukov, Saiana Khandarkhaeva, Timofey Fedotenko, Yuqing Yin, Nobuyoshi Miyajima, Ferenc Tasnádi, Alena V. Ponomareva, Nityasagar Jena, Fariia Iasmin Akbar, Bjoern Winkler, Adrien Néri, Stella Chariton, Vitali Prakapenka, Victor Milman, Wolfgang Schnick, Alexander N. Rudenko, Mikhail I. Katsnelson, Igor A. Abrikosov, Leonid Dubrovinsky, Natalia Dubrovinskaia; Advanced Materials, DOI: 10.1002/adma.202308030.

Written about this in other media:

Contact

Research environment

Latest news from LiU

Person (Robert Forchheimer) with cellphone.

The hidden costs of free apps – more than personal data

Procrastination, sleep deprivation and reduced focus are part of the price we pay for free mobile apps. This is according to researchers at LiU and RISE, who have investigated the costs hidden behind the free apps.

Water in front of a bridge and a building. Blue skies and a tree in autumn colours.

LiU climbs in global ranking list

Linköping University rises to the 201–250 band when British Times Higher Education releases its annual ranking of world universities.

Podcast turned the history teacher into a popular educator

Daniel Hermansson is an upper secondary school teacher who has become a great educator. Whether in podcast, TV or book form, the Alum of the Year tells us about our history in a way that is as entertaining as it is well-informed.