29 January 2024

Research synergy from different fields, research institutes and countries has resulted in the discovery of near-unbreakable materials. These materials are long-sought after polymeric carbon nitrides predicted to rival the hardness of diamond, while showing a wide range of further properties with possible applications in a broad range of fields.

center of one of the diamonds from the diamond anvil cell pressed against the sample after decompression showing “break/indent” in the diamond with the sample, which indicates that the sample is at least of similar hardness
Experimental evidence of the superhardness of the C3N4 polymorphs, which indented the diamond anvils’ surface.

“The multi-functionality of these materials is as important as their predicted hardness, which may lead to their application in fields where diamond doesn’t offer desired combinations of properties”, says Florian Trybel, assistant professor at Linköping University, part of the discovery team and co-author to the article. “At the moment, the synthesis pressures and temperatures of these materials are too high to produce large quantities efficiently. Theoretical simulations will play an important role in predicting new synthesis pathways at less extreme pressure and temperature conditions. This will enable us to further investigate their outstanding properties and move towards industrially relevant scales.”, he adds.

The researchers stress that the international collaboration — led by experimentalists from the University of Edinburgh and the University of Bayreuth, as well as theorists from the Theoretical physics division at Linköping University — with diverse backgrounds and scientific fields was the key to a successful discovery. The article resulting from this discovery has been a success in its own right, receiving much attention, see Altmetric – Synthesis of Ultra‐Incompressible and Recoverable Carbon Nitrides Featuring CN4 Tetrahedra.

Article: Synthesis of Ultra-Incompressible and Recoverable Carbon Nitrides Featuring CN4 Tetrahedra; Dominique Laniel, Florian Trybel, Andrey Aslandukov, Saiana Khandarkhaeva, Timofey Fedotenko, Yuqing Yin, Nobuyoshi Miyajima, Ferenc Tasnádi, Alena V. Ponomareva, Nityasagar Jena, Fariia Iasmin Akbar, Bjoern Winkler, Adrien Néri, Stella Chariton, Vitali Prakapenka, Victor Milman, Wolfgang Schnick, Alexander N. Rudenko, Mikhail I. Katsnelson, Igor A. Abrikosov, Leonid Dubrovinsky, Natalia Dubrovinskaia; Advanced Materials, DOI: 10.1002/adma.202308030.

Written about this in other media:

Contact

Research environment

Latest news from LiU

Flag at half mast at Linköping University.

LiU flies the flag at half mast

Following the tragic school shooting in Örebro yesterday, the university is flying its flags at half-mast.

Diplomatic talks focusing on nuclear waste and climate

Do the environmental organisations still have a role to play in Swedish nuclear waste final repository design? And is it possible to reach understanding between oil producer Saudi Arabia and the island nation of Fiji?

Person holding a small iridescent disc with tweezers.

Better digital memories with the help of noble gases

The electronics of the future can be made even smaller and more efficient by getting more memory cells to fit in less space. One way to achieve this is by adding the noble gas xenon when manufacturing digital memories.