11 December 2020

Driven by a vision of a sustainable world, Per Eklund is leader of a research group that develops advanced materials. One of the amazing things these materials can do is use waste heat to produce electricity. His funding from the Knut and Alice Wallenberg Foundation has now been extended by five years.

Per Eklund in the lab.
Per Eklund in the lab. Photographer: Peter Holgersson

Linköping University. His position as Wallenberg Academy Fellow has recently been extended by five years to allow him to continue his research. The value of the research grant is SEK 8.75 million.

Congratulations! What does the extension mean to you?
It’s an amazing possibility for me and my group to focus on research for a long period. And this will be needed to solve difficult questions. In addition, it is an acknowledgement that our research is of the highest quality and relevant to societal development in Sweden, which is one of the stipulations of the Wallenberg statutes.

What does your research deal with?
To put it simply, we are trying to produce electricity from heat. Pretty much everyone, for example, has sat with a laptop on their knees and felt how warm it gets – all that energy is wasted at the moment. This type of energy loss is extremely widespread, and we see examples of both large-scale and small-scale effects. I want to change this using what are known as “thermoelectric materials”. These can convert heat, or to put it more accurately temperature differences, into electricity. Thermoelectric materials have been around for a long time, but what we do is build the material one layer of atoms at a time. This allows us to control the properties, and we hope that the process will be cheaper and allow us to manufacture on a larger scale.

What can it be used for?
The sky’s the limit! Our research can contribute to sustainable energy production and a sustainable society. The technology may in the long term come to be used in, for example, cars and large-scale industry, but we have to solve some critical issues before this is possible. The material is currently used for small-scale applications where it is impractical or impossible to use other electricity sources. These include, for example, power sources for sensors in chimneys, where we want to avoid climbing the chimney to replace a battery, or in areas where an alternative to stable electricity is not available. It is also possible to use body heat to produce electricity for wearable electronics.

How do you see the coming five years?
We are planning research that will build on our exciting discoveries from the past few years. One thing we want to develop are thermoelectric materials that have greater temperature stability, and are thus more versatile. We are also looking at new methods to manufacture the materials.

What is needed for successful research?
One factor for success is to have an open, exciting and secure research environment where people are generous with ideas and share freely. The research environment in materials science in Linköping has been built up over a long period, and we see how young researchers are developing all the time, which is extremely gratifying. It’s also important that researchers have excellent support. We have a strategic research area at LiU, an interdisciplinary laboratory for advanced functional materials, AFM. Our researcher colleagues and the environment are a huge support.

Facts: Wallenberg Academy Fellows

The Wallenberg Academy Fellows are the largest private investment into young researchers in Sweden. Not only does the programme provide top-flight young researchers with long-term resources, which means that they can concentrate on research, it also increases the internationalisation of Swedish research.

Translated by George Farrants

Contact

Research at the highest level

More news from AFM

A beaker filled with water where a small solar cell is dissolved.

The next-generation solar cell is fully recyclable

In a study published in Nature, researchers at LiU have developed a method to recycle all parts of a perovskite solar cell repeatedly without environmentally hazardous solvents. The recycled solar cell has the same efficiency as the original one.

Person in protective gear working with microscope.

Individual cells can be connected to plastic electrodes

Researchers at LiU have succeeded in creating a close connection between individual cells and organic electronics. The study lays the foundation for future treatment of neurological and other diseases with very high precision.

Researcher in lab coat holds blue solar cell with tweezers.

How non-toxic and efficient solar cells can be produced

Large-scale production of organic solar cells with high efficiency and minimal environmental impact. This can now be made possible through a new design principle developed at Linköping University.

Latest news from LiU

Theopisti Stylianou-Lambert.

Theopisti Stylianou-Lambert is the next Moa Martinson Professor

Theopisti Stylianou-Lambert is a visual artist, researcher and a professor at the Cyprus University of Technology. Her research and artistic practice focus on museum studies and visual sociology, particular on photography and emerging technologies.

Thomas Keating at a table with a computer in front of him.

Highly radioactive nuclear waste – how to keep it from oblivion

Sweden’s radioactive nuclear waste will be stored in a sealed bedrock repository for 100,000 years. How can we ensure that it is not forgotten? Researchers at Linköping University have come up with a proposal.

Corinna Röver standing on a stair.

Reindeer husbandry in the shadow of war – then and now

Sweden’s NATO membership may entail increased military activity in Sami reindeer herding areas. One way of trying to predict the consequences of this is to look back in history. This is what a new research project at LiU will do.