29 October 2019

Researchers at the Laboratory of Organic Electronics have discovered a material that can both increase and reduce its volume when exposed to a weak electrical pulse. In a sponge, or filter, the researchers can control the size of particles that pass through.

Johannes Gladisch
Johannes Gladisch carries out the experiment. Photographer: THOR BALKHED
Materials, such as solids and gels, that change volume depending on temperature or pH have long been available. Such materials are used in control units (one example of which are windows in greenhouses that automatically open and close depending on the temperature). They are also used in robots and in other electromechanical systems and in applications in biomedicine. One property that researchers have, however, long sought is the change of a material from a solid form to a gel state with the aid of an electrical signal. It is particularly desirable that such electronic control of the phase transition is reversible. The goal is to be able to control the volume by electrical means. This is possible in current materials, but researchers have only been able to achieve at most a doubling of the volume.

A new material

Scientists at the Laboratory of Organic Electronics, Campus Norrköping, have now discovered a new material, a conducting polymer, that can increase its volume by a factor of more than 100. The material was synthesized in collaboration with researchers from Imperial College in London. The change takes place when the material is placed into an electrolyte and subjected to a weak electrical voltage of +0.8 V. If a negative voltage, -0.8 V, is instead applied, the material contracts, nearly the whole way back to its original volume.

This is a significantly larger volume change than those previously reported, not only in conducting polymers but also in other materials controlled by an electrical signal.

EA material that can both increase and reduce its volume when exposed to a weak electrical pulse Photo credit THOR BALKHEDxperiments carried out by Johannes Gladisch and Eleni Stavrinidou have involved the conducting polymer being placed as a film with a thickness of a few micrometres around an electrically conducting carbon fibre (shown in the video linked here). When electrical pulses with magnitudes of +0.5 V or +0.8 V are applied, the material changes its internal structure, then absorbs water and is finally converted to a gel that expands to 14 or 120 times the original volume. When pulses of magnitude +/- 0.5 V are repeatedly applied, the material expands by approximately 300%, or to three times, with respect to its previous contracted state. The change in volume is reversible.

Changing the pores

The scientists also describe an application in the article, published in Advanced Science. This is a smart sponge, or filter, in which they can control the expansion electronically, and in this way change the pore size by 85%.

“We can control the pore size of a filter electronically, and potentially actively control the size of particles that pass through. This means that the properties of this smart filter can be dynamically changed to allow different types or different sizes of particle to pass through. This function can be used for sieving, filtration, purification, and in process chemistry. It may also have applications in medicine and biochemistry”, says Magnus Berggren, professor in organic electronics and director of the Laboratory of Organic Electronics.

Reversible Electronic Solid-Gel Switching of a Conjugated Polymer,
Johannes Gladisch, Eleni Stavrinidou, Sarbani Ghosh, Alexander Giovannitti, Maximilian Moser, Igor Zozoulenko, Iain McCulloch and Magnus Berggren. Advanced Science, 2019, DOI 10.1002/advs.201901144
Eleni Stavrinidou, Johannes Gladisch and Magnus Berggren Photo credit Photomontage: THOR BALKHEDThe research has been financed by Knut and Alice Wallenberg Foundation, The Wallenberg Wood Science Center the Swedish Research Council (VR), and the Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linköping University,

Translated by George Farrants


Contact

News from LOE

Researcher with blue gloves by microscope.

Plastic nerve cells become more advanced – and simpler

An artificial neuron made of conductive plastics that can perform advanced functions similar to those of biological nerve cells has been demonstrated by researchers at LiU.

Centres of Excellence strengthen LiU’s research

The investment in four prominent research environments, Centres of Excellence, will ensure long-term development, improved quality and deeper collaboration for LiU.

Two researches in the clean room.

Major step for flat and adjustable optics

By carefully placing nanostructures on a flat surface, researchers at LiU have significantly improved the performance of so-called optical metasurfaces in conductive plastics. This is a major step for controllable flat optics.

LOE

Latest news from LiU

Older man and small child laughing to each other.

Men’s lifestyles may impact their grandchildren’s health

Habits and health issues can contribute to a kind of biological memory that can be passed on to future children. A review paper by LiU researchers presents a theory about the father’s contribution to protecting his descendants from infections.

A man in formal wear on stage

Professors and award winners get their own Academic Ceremony

New professors will be inaugurated and award winners and Alumni of the Year will be celebrated at the Academic Ceremony on 10 October. Linköping University is growing, and as of this year two Academic Ceremonies will be held.

CMIV's MR scanner Philips 3T

From inside the body to the future of healthcare – 25 years of CMIV

25 years ago, an idea was born in Linköping: to unite research, healthcare, and industry in developing the medical tools of the future. Two years later, that vision became reality when CMIV was founded and its operations began.