18 November 2021

Safe, cheap and sustainable technology for energy storage has been developed at the Laboratory of Organic Electronics, LiU. It is based on two major breakthroughs: the manufacture of wood-based electrodes in rolled form, and a new type of water-based electrolyte.

Professor Xavier Crispin and research engineers Ujwala Ail and Ziyauddin Khan, at the crimper that manufactures coin cell batteries, in the Laboratory of Organic Electronics.
Professor Xavier Crispin and research engineers Ujwala Ail and Ziyauddin Khan, at the crimper that manufactures coin cell batteries, in the Laboratory of Organic Electronics. Thor Balkhed
The technology has now been patented and is to be commercialised by Norrköping-based spin-off company Ligna Energy AB, which received the award for best “Startup for Printed battery with two cells before encapsulation, designed in collaboration with the Ligna Energy company.Printed battery with two cells before encapsulation, designed in collaboration with the Ligna Energy company. Photo credit Thor BalkhedClimate”, during the recent COP26 meeting in Glasgow. The result has been published in the scientific journal Advanced Energy and Sustainability Research.

An increasing share of renewable energy in the energy mix and increasing consumption of electricity in society are causing major challenges for balancing power supply networks. In principle, electricity is consumed at the instant of its production, and there are currently limited options for storing large amounts of electricity. The problem is particularly acute during cold periods, when the demand for electricity is highest. Imbalance in the grid can cause serious power outages.

Large-scale energy storage

Professor Xavier Crispin and his colleagues at the Laboratory of Organic Electronics, Linköping University, have developed a concept for large-scale energy storage that is safe, cheap and sustainable. The potential power output is sufficiently high for the technology to maintain power balance in the electricity supply.

Coin cell batteries are manufactured in the Laboratory of Organic Electronics using new safe and sustainable technology, showing that it is possible to use the technology in practice.Coin cell batteries are manufactured in the Laboratory of Organic Electronics using new safe and sustainable technology, showing that it is possible to use the technology in practice. Photo credit Thor Balkhed“Our results allow for safe, environmentally sustainable organic energy storage with high power density, 5 kW/kg, where the electrodes are manufactured from wood-based material in a printing press. We must, however, increase the energy density: our organic batteries are better than normal supercapacitors, and have about the same performance as lead-acid batteries. But lithium-ion batteries are better”, says Xavier Crispin.

Previous attempts to develop a sustainable system for energy storage based on cheap organic and water-based electrolytes with carbon-based electrodes have all had problems with rapid self-discharge: it has been difficult to achieve more than one day.

World record

The excellent results presented in the article are based on two breakthroughs: a new type of water-based electrolyte, and electrodes made from lignin, which is a readily available, cheap by-product from the manufacture of paper. The researchers have developed a polyelectrolyte that consists of a highly concentrated water-based polymer, potassium polyacrylate, together with biopolymer lignin (as positive electrode) and polyimide mixed with conductive carbon (as negative electrode).

“The voltage drop, which measures the self-discharge, is less than 0.5 V in 100 hours, which is a world record for energy storage with organic electrodes in water-based electrolytes”, says Xavier Crispin.

And the new technology uses cheap raw materials: neither lignin, carbon nor the polyelectrolyte cost more that 1 USD/kg. These are readily available and non-flammable materials, and the technology can be scaled up to large batteries. It is a sustainable solution for large-scale and safe energy storage.

The major sources of funding for the research have been the Knut and Alice Wallenberg Foundation, and the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University.

Water-In-Polymer Salt Electrolyte for Slow Self-discharge in Organic Batteries, Ziyauddin Khan, Ujwala Ail, Fatima Nadia Ajjan, Jaywant Phopase, Zia Ullah Khan, Nara Kim, Jakob Nilsson, Olle Inganäs, Magnus Berggren, Xavier Crispin, Advanced Energy and Sustainability Research 2021. DOI: 10.1002/aesr.202100165

The electrolyte here is seen in the form of a gel, while the black base is a large-area lignin electrode coated on a metal collector.  The electrolyte here is seen in the form of a gel, while the black base is a large-area lignin electrode coated on a metal collector. Photo credit Thor Balkhed

Translated by George Farrants.


Contact

More news Organic Energy Materials

Mikhail Vagin and Penghui Ding working in the laboratory.

LiU researchers first to develop an organic battery

Researchers at the Laboratory of Organic Electronics have for the first time demonstrated an organic battery. It is of a type known as a “redox flow battery” that can be used to store energy from solar cells, and as a power bank for cars.

The heat from the sun vaporises the water, while salt and other materials remain behind.

A cheap organic steam generator to purify water

A high-efficiency steam generator for the purification and desalination of water can be built using cheap and natural materials such as cellulose. The steam generator has been developed at the Laboratory of Organic Electronics, LiU.

Nara Kim, in the background Xavier Crispin and Klas Tybrandt

Creating stretchable thermoelectric generators

For the first time, a soft and stretchable organic thermoelectric module has been created that can harvest energy from body heat. The breakthrough was enabled by a new composite material that may have widespread use.

Latest news from LiU

Decomposed leaf.

The reaction explaining large carbon sinks

A mystery has finally been solved. Researchers from LiU and Helmholtz Munich have discovered that a certain type of chemical reaction can explain why organic matter found in rivers and lakes is so resistant to degradation.

Experienced and driven manager and leader – LiU’s new University Director

Anna Thörn is to be the new University Director at LiU. She is currently regional administrative director of Region Dalarna and has previously held several management positions in Östergötland, including as municipal director in Norrköping.

The choir at the walpurgis celebration

Walpurgis tradition turns 50

The Walpurgis celebration will, as is customary, include songs and speeches to spring and donning of caps with the Linköping University Male Voice Choir in Borggården outside Linköping Castle. This year, the tradition celebrates its 50th anniversary.