28 October 2024

Imagine a flexible module capable of converting waste heat into electricity, whether the surface it's attached to is flat or curved. This module can also generate heating or cooling from electricity. Fully functional prototypes are now available at Linköping University.

Photographer: Thor Balkhed

After three years of work at the Printed Electronics Arena at Campus Norrköping, researchers from Linköping University and RISE, in collaboration with the Danish company ParsNord, have completed prototypes for flexible thermoelectric modules.

A thermoelectric module (TEM) is an electronic device that can convert heat into electricity or use electricity to create heating or cooling. It harnesses temperature differences: when one side of the module is hot and the other is cold, electricity is generated. Alternatively, when electricity is applied, one side becomes cooler while the other gets warmer.

Thermoelectric modules currently available on the market are used in products such as portable coolers, car seat heaters, and energy-harvesting devices. However, traditional TEMs are rigid, limiting their range of applications.

Photographer: Thor Balkhed

The main outcome of this project is the production of a relatively affordable module that functions even on non-flat surfaces.

The invention open up new applications such as wearable coolers for medical purposes and electric generators that can power sensor nodes in smart buildings and industrial environments.

According to the developers, this breakthrough is expected to have significant scientific and technological impact. The long-term vision is to establish Europe’s first manufacturer of flexible thermoelectric modules, headquartered in Norrköping at the House of Printed and Organic Electronics (HOPE).

Seyedmohammad Mortazavinatanzi, Postdoc at LiU and CEO at ParsNord Thermoelectric Filial has led the project, which is funded by the Norrköping Municipality's Fund for Research and Development. (Swedish).

Pipette against black background..

A pipette that can activate individual neurons

Researchers at LiU have developed a type of pipette that can deliver ions to individual neurons without affecting the sensitive extracellular milieu. The technique can provide important insights into how individual braincells are affected.

 Illustration generated with AI technology.

2d-paper

"2D-Paper" proposes to combine 2D materials and cellulose to create a new thermally conductive paper substrate for flexible electronics.

Functional pi-materials

Functional Pi-Materials

Building functional nanostructures for clean energy technology through organic chemistry.

A woman sitting in a couch.

Award winner with an interest in how people solve practical problems

Blood. Engineers. Housewives. The list of subjects Boel Berner, professor emerita at LiU, has taken an interest in is long and still growing. She is now awarded the Ingemar Ingemarsson interdisciplinarity prize.

Street in a city with cars.

Disturbance-free city during construction projects

Having a holistic approach to all construction projects in a city is the most important factor for minimising disturbance. But that is easier said than done. This is shown by researchers from LiU in a new book.

A woman standing by a tree.

SEK 26 million for research on the environment and sustainability

Five projects at LiU receive funding when the Kamprad Family Foundation rewards research that can contribute to a better environment and better quality of life for the elderly. The projects at Linköping University are very much about sustainability.