16 January 2019

The organic polymer PEDOT is probably one of the world’s most intensely studied materials. Despite this, LiU researchers have now demonstrated that the material functions in a completely different manner than previously believed. The result has huge significance in many fields of application.

Long shot of Igor Zozoulenko walking outside a building at campus Norrköping.
Peter Holgersson AB
More than 1,500 scientific articles are devoted each year to the conducting organic polymer PEDOT, making it probably one of the world’s most intensely studied materials. This polymer has unique properties, and is highly suitable for use in solar cells, electrodes, light-emitting diodes, soft displays, bioelectronic components, and many other applications. However, most articles are experimental in nature, and only a tiny fraction – fewer than one in a thousand – of the articles provide a theoretical understanding of the various aspects of the polymer. The same is true for the electronic structure of PEDOT.

“The age of trial and error research should be over. I cannot imagine how it would be possible today to develop a new material without having a deep theoretical understanding of the underlying principles that determine its properties”, says Igor Zozoulenko, professor and head of the theory and modelling group at the Laboratory of Organic Electronics, Linköping University, Campus Norrköping.

New theory of electronic structure

He is also the main author of an article in ACS Applied Polymer Materials that presents a new theory of electronic structure and optical properties of PEDOT that overturns a large part of the corresponding previous research into PEDOT.

The calculation model currently recognised as the most accurate for predicting the properties of materials is known as “DFT”, an abbreviation of “density functional theory”. The method calculates quantum mechanical electron densities in the most efficient way possible, and has become a standard within the various branches of materials science. For organic conducting polymers, however, models developed in the 1980s - before the DFT gained its widespread use - are still widely utilized. The work of the researchers at LiU has shown that these models are clearly erroneous.

190114 Professor Igor Zozoulenko vid Institutionen fšr Teknik och Naturvetenskap, Linkšpings Universitet den 14 januari 2019 i Norrkšping.  Foto: Peter Holgersson AB Photo credit Peter Holgersson AB“Many of the analyses that have been presented in scientific articles about PEDOT will have to be re-visited and revised”, says Igor Zozoulenko.

Optical absorption

One of the major differences concerns the optical absorption, or (somewhat simplified) the light-emitting properties, of the material. These are, of course, crucial for its use in solar cells, soft displays, and other applications. The optical spectrum – the colour of the light – depends on the electronic structure of the material, including such properties as the energy levels at which electrons are located inside the atom, the spins they possess, and the way in which they can move in the material. Since our understanding has been deficient, the interpretation of the experimental results has been wrong.

PEDOT, or poly(3,4-ethylenedioxythiophene), is also a material that can be doped to give it its remarkable conductivity. The colour changes as the degree of doping increases, or, in other words, as increasing amounts of a doping agent are added to break the pairing between electrons in the atoms. Previous methods have, quite simply, not been sufficiently exact.

“Our paper presents a completely different interpretation of the optical spectra from PEDOT, and a completely different interpretation of the electron parametric resonance spectrum, EPR. Our results can also be applied to many other conducting polymer materials”, says Igor Zozoulenko.


The article: Polarons, Bipolarons, and Absorption Spectroscopy of PEDOT
Igor Zozoulenko, Amritpal Singh, Sandeep Kumar Singh, Viktor Gueskine, Xavier Crispin, and Magnus Berggren, Laboratory of Organic Electronics, ITN, Linköping University. ACS Applied Polymer Materials 2018. DOI 10.1021/acsapm.8b00061

Footnote: Walter Kohn was awarded the Nobel Prize in Chemistry in 1998 for the development of the density functional theory, and the Nobel Prize in Chemistry was awarded in 2013 to three scientists working in the theoretical modelling of complex chemical systems: Martin Karplus, Michael Levitt and Arieh Warshel.

Translation George Farrants

Contact

More LOE news

Researcher (Xenofon Strakosas) by a microscope.

Ten million donation for research position in electronic medicine

The Stig Wadström Foundation is donating around SEK ten million to LiU, to fund a research position in electronic medicine. The researcher chosen for this position is Xenophon Strakosas at the Laboratory of Organic Electronics in Norrköping.

Person in labcoat and gloves pours a blue liquid onto a glass surface.

New sustainable method for creating organic semiconductors

Researchers at LiU have developed a new, more environmentally friendly way to create conductive inks for use in organic electronics. The findings pave the way for future sustainable technology.

Two researchers connect a beaker of water to some wires.

Electronic “soil” enhances crop growth

Barley seedlings grow on average 50% more when their root system is stimulated electrically through a new cultivation substrate.  LiU-researchers have developed an electrically conductive “soil” for hydroponics.

Research

Latest news from LiU

Decomposed leaf.

The reaction explaining large carbon sinks

A mystery has finally been solved. Researchers from LiU and Helmholtz Munich have discovered that a certain type of chemical reaction can explain why organic matter found in rivers and lakes is so resistant to degradation.

Experienced and driven manager and leader – LiU’s new University Director

Anna Thörn is to be the new University Director at LiU. She is currently regional administrative director of Region Dalarna and has previously held several management positions in Östergötland, including as municipal director in Norrköping.

The choir at the walpurgis celebration

Walpurgis tradition turns 50

The Walpurgis celebration will, as is customary, include songs and speeches to spring and donning of caps with the Linköping University Male Voice Choir in Borggården outside Linköping Castle. This year, the tradition celebrates its 50th anniversary.