16 January 2019

The organic polymer PEDOT is probably one of the world’s most intensely studied materials. Despite this, LiU researchers have now demonstrated that the material functions in a completely different manner than previously believed. The result has huge significance in many fields of application.

Long shot of Igor Zozoulenko walking outside a building at campus Norrköping.
Peter Holgersson AB
More than 1,500 scientific articles are devoted each year to the conducting organic polymer PEDOT, making it probably one of the world’s most intensely studied materials. This polymer has unique properties, and is highly suitable for use in solar cells, electrodes, light-emitting diodes, soft displays, bioelectronic components, and many other applications. However, most articles are experimental in nature, and only a tiny fraction – fewer than one in a thousand – of the articles provide a theoretical understanding of the various aspects of the polymer. The same is true for the electronic structure of PEDOT.

“The age of trial and error research should be over. I cannot imagine how it would be possible today to develop a new material without having a deep theoretical understanding of the underlying principles that determine its properties”, says Igor Zozoulenko, professor and head of the theory and modelling group at the Laboratory of Organic Electronics, Linköping University, Campus Norrköping.

New theory of electronic structure

He is also the main author of an article in ACS Applied Polymer Materials that presents a new theory of electronic structure and optical properties of PEDOT that overturns a large part of the corresponding previous research into PEDOT.

The calculation model currently recognised as the most accurate for predicting the properties of materials is known as “DFT”, an abbreviation of “density functional theory”. The method calculates quantum mechanical electron densities in the most efficient way possible, and has become a standard within the various branches of materials science. For organic conducting polymers, however, models developed in the 1980s - before the DFT gained its widespread use - are still widely utilized. The work of the researchers at LiU has shown that these models are clearly erroneous.

190114 Professor Igor Zozoulenko vid Institutionen fšr Teknik och Naturvetenskap, Linkšpings Universitet den 14 januari 2019 i Norrkšping.  Foto: Peter Holgersson AB Photo credit Peter Holgersson AB“Many of the analyses that have been presented in scientific articles about PEDOT will have to be re-visited and revised”, says Igor Zozoulenko.

Optical absorption

One of the major differences concerns the optical absorption, or (somewhat simplified) the light-emitting properties, of the material. These are, of course, crucial for its use in solar cells, soft displays, and other applications. The optical spectrum – the colour of the light – depends on the electronic structure of the material, including such properties as the energy levels at which electrons are located inside the atom, the spins they possess, and the way in which they can move in the material. Since our understanding has been deficient, the interpretation of the experimental results has been wrong.

PEDOT, or poly(3,4-ethylenedioxythiophene), is also a material that can be doped to give it its remarkable conductivity. The colour changes as the degree of doping increases, or, in other words, as increasing amounts of a doping agent are added to break the pairing between electrons in the atoms. Previous methods have, quite simply, not been sufficiently exact.

“Our paper presents a completely different interpretation of the optical spectra from PEDOT, and a completely different interpretation of the electron parametric resonance spectrum, EPR. Our results can also be applied to many other conducting polymer materials”, says Igor Zozoulenko.


The article: Polarons, Bipolarons, and Absorption Spectroscopy of PEDOT
Igor Zozoulenko, Amritpal Singh, Sandeep Kumar Singh, Viktor Gueskine, Xavier Crispin, and Magnus Berggren, Laboratory of Organic Electronics, ITN, Linköping University. ACS Applied Polymer Materials 2018. DOI 10.1021/acsapm.8b00061

Footnote: Walter Kohn was awarded the Nobel Prize in Chemistry in 1998 for the development of the density functional theory, and the Nobel Prize in Chemistry was awarded in 2013 to three scientists working in the theoretical modelling of complex chemical systems: Martin Karplus, Michael Levitt and Arieh Warshel.

Translation George Farrants

Contact

More LOE news

Sheet of glass with droplet.

Next-generation sustainable electronics are doped with air

Researchers at LiU have developed a new method where organic semiconductors can become more conductive with the help of air as a dopant. The study is a significant step towards future sustainable organic semiconductors.

Battery om fingertip.

Eco-friendly and affordable battery for low-income countries

A battery made from zinc and lignin that can be used over 8000 times. This has been developed by researchers at LiU with a vision to provide a cheap and sustainable battery solution for countries where access to electricity is limited.

Researcher (Xenofon Strakosas) by a microscope.

Ten million donation for research position in electronic medicine

The Stig Wadström Foundation is donating around SEK ten million to LiU, to fund a research position in electronic medicine. The researcher chosen for this position is Xenophon Strakosas at the Laboratory of Organic Electronics in Norrköping.

Research

Latest news from LiU

Keti Chukhrov.

“The Swedish academic world is very unique”

Keti Chukhrov has appreciated her year at LiU as the Tage Danielson visiting professor. She is impressed by the democratic organisation and the true spirit of assistance and collaboration at IKOS, LiU.

The supercomputer Berzelius.

Supercomputer Berzelius to be upgraded to double capacity

The supercomputer Berzelius is used for research in fields such as life sciences, machine learning and artificial intelligence. This autumn, it will be upgraded thanks to a donation of SEK 125 million from the Knut and Alice Wallenberg Foundation.

New and old oil filter.

Making remanufacturing profitable

Returning end-of-life products to as-new condition is called remanufacturing. For more industrial companies to take an interest in it, remanufacturing needs to be economically viable. Johan Vogt Duberg has investigated how this can be accomplished.