09 November 2020

Scientists at Linköping University working with the perovskite family of materials have taken a step forwards and developed an optoelectronic magnetic double perovskite. The discovery opens the possibility to couple spintronics with optoelectronics for rapid and energy-efficient information storage.

Two male scientists walks and talks in a hallway.
Weihua Ning and Feng Gao at the Department of Physics, Chemistry and Biology. Photographer: Thor Balkhed

Perovskites form a family of materials with many interesting properties: they are cheap to manufacture, have excellent light-emitting properties and can be tailored for different applications. Researchers have until now concentrated on developing variants for solar cells, light-emitting diodes and rapid optical communication. Perovskites can consist of many different organic and inorganic substances, but they are defined by their special cubic crystal structure. One type of perovskite that contains halogens and lead has recently been shown to have interesting magnetic properties, opening the possibility of using it in spintronics.

Iron ions

Spintronics is the field of technology in which information is stored about the direction of rotation of a particle (its spin), not only its charge (plus or minus). Spintronics is thought to have huge potential for the next generation of information technology, since information can be transmitted at higher speeds and with low energy consumption. It turned out, however, that the magnetic properties of halide perovskites have until now been associated only with lead-containing perovskites, which has limited the development of the material for both health and environmental reasons.

Red perovskite in forceps. Photo credit Thor BalkhedThe scientists at Linköping University have now, together with a large group of colleagues in Sweden, the Czech Republic, Japan, Australia, China and the US, and led by Professor Feng Gao of LiU, managed to create non-hazardous perovskite alloy, and produce a magnetic double perovskite.

They show in an article in Science Advances that magnetic iron ions, Fe3+, are incorporated into a previously known double perovskite with interesting optoelectronic properties and consisting of caesium, silver, bismuth and bromine, Cs2AgBiBr6.

More research is needed

The researchers have shown in experiments that the new material has a magnetic response at temperatures below 30 K (-243.15 °C).

“These are preliminary experiments from an exploratory investigation, and we are not completely sure of the origin of the magnetic response. Our results, however, suggest that it is probably due to a weak ferromagnetic or anti-ferromagnetic response. If so, we have a whole class of new materials for future information technology. But more research is needed, not least to obtain the magnetic properties at higher temperatures”, says Feng Gao.

“Perovskites are exciting materials, and they have a huge potential for use in future products that need the cheap and rapid transfer of information”, he says.

The research has received funding from many sources, including the Knut and Alice Wallenberg Foundation and the Swedish Government Strategic Research Area in Materials Science on Functional Materials (AFM) at Linköping University.

The article: Magnetizing Lead-Free Halide Double Perovskites, Weihua Ning, Jinke Bao, Yuttapoom Puttisong, Fabrizo Moro, Libor Kobera, Seiya Shimono, Linqin Wang, Fuxiang Ji, Maria Cuartero, Shogo Kawaguchi, Sabina Abbrent, Hiroki Ishibashi, Roland the Marco, Irina A. Bouianova, Gaston A. Crespo, Yoshiki Kubota, Jiri Brus, Duck Young Chung, Licheng Sun, Weimin M. Chen, Mercouri Kanatzidis, Feng Gao. Science Advances 2020.
DOI 10.1126/sciadv.abb5381

Footnote: The halogens are a group of common and reactive substances that includes fluorine, chlorine, bromine and iodine.

Translated by George Farrants

Perovskites, similar to black and red crystals, lies on a light table. Photo credit Thor Balkhed

Research at the highest level

Advanced Functional Materials - AFM

Advanced Functional Materials, AFM, is an interdisciplinary research environment conducting studies in advanced functional materials. The initiative is based on a government investment with strategic research areas as its foundation.

Latest news from AFM

A flexible battery pulled in different directions.

A fluid battery that can take any shape

Using electrodes in a fluid form, researchers at LiU have developed a battery that can take any shape. This soft and conformable battery can be integrated into future technology in a completely new way.

Researcher hold a glowing sheet of glass with tweezers.

Next generation LEDs are cheap and sustainable

Cost, technical performance and environmental impact – these are the three most important aspects for a new type of LED technology to have a broad commercial impact on society. This has been demonstrated by LiU-researchers in a new study.

A beaker filled with water where a small solar cell is dissolved.

The next-generation solar cell is fully recyclable

In a study published in Nature, researchers at LiU have developed a method to recycle all parts of a perovskite solar cell repeatedly without environmentally hazardous solvents. The recycled solar cell has the same efficiency as the original one.

Organisation

Latest news from LiU

Professor emerita Ulla Riis

Pioneer in education and IT new jubilee doctor at Linköping University

In 1970, Ulla Riis joined LiU as a new lecturer in education. She was encouraged to pursue doctoral studies by the first professor in the subject. At the Academic Ceremony, she will now, more than fifty years later, become a jubilee doctor.

A procession is passing through a festively dressed crowd

Academic Celebrations for semi-centennial university

This spring’s Academic Celebrations will take place on 23-24 May. Among the highlights are the performance of a new piece of music composed in honour of the university, and open lectures by thonorary doctors, including Nvidia CEO Jensen Huang.

Snus cessation led to increased body weight and blood pressure

Snus users who stopped using snus experienced higher blood pressure and gained weight. This has been shown by a research group at Linköping University in a study on 33 people.