13 October 2024

LiU is participating in a new research project, in collaboration with Saab and the Royal Institute of Technology (KTH), to test composite materials under various temperatures and mechanical loads.

Six men in  a lab.
The participants in the project visit the lab at Campus Valla, Linköping University. Jens Sjölander (Saab), Zlatan Kapidzic (Saab and LiU), Tobias Karlsson (KTH), Vivekendra Singh (Saab) and Mohamed Loukil (LiU) receive a brief description from Jinghao Xu (LiU). Photographer: Ulrik Svedin

The project, which began in the autumn of 2024, consists of an experimental part where samples are tested to characterise the material properties of the hybrid composites from different aspects. Measurements are made with sensors that are integrated into the material.

"This project strengthens the collaboration between LiU, Saab and KTH in composite materials research. We need to study the durability, damage tolerance and lifespan of the composite materials to know how we can use them in different contexts", says Mohamed Sahbi Loukil, assistant professor at Linköping University.

Aviation sector

Systematic characterisation of material properties, the material's structural behavior and the development of hybridisation methods are expected to contribute to the industrialisation of hybrid composites and built-in sensors in the aviation sector − and thereby a more efficient use of the composite materials.

The project is coordinated by Dr. Zlatan Kapidzic, adjunct professor at LiU and Technical Fellow in the field of fatigue and damage tolerance at Saab AB. Other members of the consortium are from Linköping University (LiU) and the Royal Institute of Technology (KTH).

“Through this work, we aim to develop a strong understanding of hybrid composite materials and their behavior under various thermal and mechanical conditions," says Zlatan Kapidzic, the project coordinator.

Method development

The duration of the project is four years and the total cost is SEK 8 million, of which SEK 4 million is financed by Vinnova within the call for Strengthened Swedish aviation research and innovation - NFFP8.

The project focuses on the development of experimental and analytical methods to characterise the thermomechanical behavior of hybrid glass/carbon fiber composites, as well as the development of experimental measurement technology, based on integrated sensors with carbon nanotubes (CNT), and its application to hybrid composites.

Implementation

The project consists of an experimental part where samples are tested under thermal and mechanical loads to characterise the material properties of the hybrid composites from different aspects and where measurements are made with integrated sensors. Test data is used as a basis for the development of methods and models for strength assessment.

Contact

Organisation

Latest news from LiU

Strong ties between LiU and Japan

High-quality education and outstanding research unite Linköping University with universities in Japan – but there are also shared challenges. For example, the timing of semester starts should be synchronised, according to Japan’s ambassador...

The shape of the cell nucleus influences cancer treatment

Cancer cells with a cell nucleus that is easily deformed are more sensitive to drugs that damage DNA, shows a new study. The results may also explain why combining certain cancer drugs can produce the opposite of the intended effect.

A miniature model of a brain made by gel.

Large donations for innovative treatment for Parkinson’s disease

The Promobilia Foundation has donated SEK 30 million to LiU for a research project where organic electronics will be used to treat Parkinson’s disease symptoms. Stiftelsen för Parkinsonsforskning at LiU has also donated SEK 5 million to the purpose.