13 October 2024

LiU is participating in a new research project, in collaboration with Saab and the Royal Institute of Technology (KTH), to test composite materials under various temperatures and mechanical loads.

Six men in  a lab.
The participants in the project visit the lab at Campus Valla, Linköping University. Jens Sjölander (Saab), Zlatan Kapidzic (Saab and LiU), Tobias Karlsson (KTH), Vivekendra Singh (Saab) and Mohamed Loukil (LiU) receive a brief description from Jinghao Xu (LiU). Photographer: Ulrik Svedin

The project, which began in the autumn of 2024, consists of an experimental part where samples are tested to characterise the material properties of the hybrid composites from different aspects. Measurements are made with sensors that are integrated into the material.

"This project strengthens the collaboration between LiU, Saab and KTH in composite materials research. We need to study the durability, damage tolerance and lifespan of the composite materials to know how we can use them in different contexts", says Mohamed Sahbi Loukil, assistant professor at Linköping University.

Aviation sector

Systematic characterisation of material properties, the material's structural behavior and the development of hybridisation methods are expected to contribute to the industrialisation of hybrid composites and built-in sensors in the aviation sector − and thereby a more efficient use of the composite materials.

The project is coordinated by Dr. Zlatan Kapidzic, adjunct professor at LiU and Technical Fellow in the field of fatigue and damage tolerance at Saab AB. Other members of the consortium are from Linköping University (LiU) and the Royal Institute of Technology (KTH).

“Through this work, we aim to develop a strong understanding of hybrid composite materials and their behavior under various thermal and mechanical conditions," says Zlatan Kapidzic, the project coordinator.

Method development

The duration of the project is four years and the total cost is SEK 8 million, of which SEK 4 million is financed by Vinnova within the call for Strengthened Swedish aviation research and innovation - NFFP8.

The project focuses on the development of experimental and analytical methods to characterise the thermomechanical behavior of hybrid glass/carbon fiber composites, as well as the development of experimental measurement technology, based on integrated sensors with carbon nanotubes (CNT), and its application to hybrid composites.

Implementation

The project consists of an experimental part where samples are tested under thermal and mechanical loads to characterise the material properties of the hybrid composites from different aspects and where measurements are made with integrated sensors. Test data is used as a basis for the development of methods and models for strength assessment.

Contact

Organisation

Latest news from LiU

Two women discussing in the lab.

Sperm molecules can predict IVF success

The sperm is not a passive supplier of genetic material to the egg. A study shows that certain molecules that come with the sperm, so-called micro-RNA, contribute to the development of the embryo several days after conception.

Space is not just technology, also a place for culture and ethics

In the shadow of rockets, satellites and billionaires’ space projects, a new field of research is emerging. It is about understanding space also as an arena for culture, politics and ethics.

Ahead of the COP30 climate summit: “It’s looking really bad.”

Not enough is being done, and not fast enough. That is the harsh assessment made by LiU researchers Mathias Fridahl and Maria Jernnäs ahead of this year’s major international climate summit in Brazil.