19 January 2024

Each year, more than 2 million patients in Sweden visit an emergency department. These departments often experience crowding leading to a rise in return visits and increased mortality. A WCMM project will target shortcomings of current triage tools.

Picture from the emergency department at Linköping US.
The picture is taken at the emergency department at the University Hospital in Linköping. Photographer: John Karlsson

Through funding initiative for strategic collaborative projects from Wallenberg Centre for Molecular Medicine (WCMM), clinical fellows have the chance to propel their research into new dimensions.

Leading the charge is a visionary project titled "Expanding the use of hyperspectral imaging to detecting markers of deterioration in models of acute sickness." Led by WCMM Clinical Fellow Daniel Wilhelms and WCMM Fellow Rolf Saager, the project dives into microvascular dysfunction to transform emergency healthcare.

Addressing gaps in emergency care

Each year, more than 2 million patients in Sweden visit an emergency department, resulting in nearly 2.6 million visits. The Emergency Departments frequently experience, leading to a rise in return visits and increased mortality.

The research outlines three key objectives:

  1. Develop and validate hyperspectral imaging for acute blood loss/shock models.
  2. Explore changes in acute bacterial infection models using lipopolysaccharide (LPS) injection.
  3. Improve risk stratification for emergency patients through microvascular imaging and physiological modeling.

Bridging gaps for future clinical impact

The researchers underscore the need to adapt hyperspectral imaging for clinical use. The interdisciplinary collaboration aims to refine technology, ultimately enhancing risk stratification for emergency patients.

The project's timeline is ambitious:

  • Year One (2024): Central and peripheral hyperspectral imaging on volunteers simulating acute blood loss/shock.
  • Year Two (2025): Exploring acute bacterial infection models through randomized, cross-over experiments.

“By combining interdisciplinary expertise in microvascular imaging, physiological modeling, and access to relevant, models of acute sickness, this project holds a strong long-term potential to enhance methods for risk stratification of emergency department patients, as well as to improve our basic physiological understanding of microvascular dysfunction in acute illness,” the WCMM researchers say.

Contact

Latest news from LiU

Researchers discussing in lab.

Linköping University launches new advanced composite laboratory

LiU Composite Laboratory (LCL) is the name of a newly established laboratory at Linköping University. Here, research into polymer composite materials will be conducted in collaboration with industry and other unversities.

Server room and data on black background.

Machine Psychology – a bridge to general AI

AI that is as intelligent as humans may become possible thanks to psychological learning models, combined with certain types of AI. This is the conclusion of Robert Johansson, who in his dissertation has developed the concept of Machine Psychology.

Research for a sustainable future awarded almost SEK 20 million grant

An unexpected collaboration between materials science and behavioural science. The development of better and more useful services to tackle climate change. Two projects at LiU are to receive support from the Marianne and Marcus Wallenberg Foundation.