The construction of a quantum computer is one the EU’s flagship projects, in competition with mammoth IT companies, which are investing huge resources to succeed first. A related technology is quantum cryptography, which many people believe is the final word in computer security.
Cutting-edge technology
Students taking the master’s programme in applied physics and electrical engineering, known as the “Y programme” at LiU, have long been able to choose separate profiles in both applied physics and electrical engineering. Starting in the autumn of 2020, however, they will be able to choose a new profile, Photonics and Quantum Technology, which combines knowledge in applied physics and electrical engineering.Jan-Åke Larsson Photo credit Thor Balkhed“This is cutting-edge technology of the future, and we are seeing increasing interest from current students, while demand from high-technology companies is increasing for graduates with knowledge of photonics and quantum technology”, says Jan-Åke Larsson, professor of information coding.
Studies will cut across the two areas of expertise and research that form the basis of the current Y programme, and will be available to both those already studying at LiU and new students.
“The education will focus on modern optics and optoelectronics, and on quantum mechanics, quantum communication and experimental physics. One major component will be a large project on the subject, just as for other master’s programmes at LiU”, says Kenneth Järrendahl, professor of applied optics.
Useful knowledge
Other important areas are computer security and internet technology.“This education will be useful for engineering graduates in many lines of work, such as computer security and communication. Other fields include sensor technology and machine learning”, says Jan-Åke Larsson.
LiU has several fully equipped laboratories that are open for students, including an optics lab, a lab for quantum cryptography, and one for optical communication. It also has facilities for conducting calculations on a quantum computer.
“We are now reviewing the courses in applied physics and electrical engineering given by two departments, to see what needs to be updated and unified. Some new courses will have to be developed. A lot that’s interesting happens when two closely related but separate fields meet”, Kenneth Järrendahl concludes.