03 June 2021

As the corona pandemic swept across the world, virologists and protein chemists rapidly joined forces and started to collaborate. Together they were able to develop ways to test the immune response after infection, and help the healthcare system.

Mohammad Azharuddin and Jorma Hinkula in the laboratory.Doctoral student Mohammad Azharuddin and Jorma Hinkula measure the amount of antibodies against the coronavirus. Photo credit Alfred Rombo

“The group of coronaviruses has long been known, but they have been considered to be just rather mild cold viruses. The first SARS virus was an exception. When the new coronavirus appeared, nobody expected that what started as a small epidemic in Asia would suddenly be found in a ski resort in Italy and subsequently spread rapidly all over the world. I knew that influenza viruses can do this, but I could never have imagined that a coronavirus could be so dangerous. It was a shock”, says Jorma Hinkula, professor of molecular virology.Professor Marie Larsson and professor Jorma Hinkula have a discussion in the laboratory.Professor Marie Larsson and professor Jorma Hinkula are involved in the research collaboration. Photo credit Magnus Johansson

He and the other virus researchers at the Faculty of Medicine and Health Sciences at the university were nearest neighbours to the hospital. They realised at an early stage that the medical care system needed to know whether a patient in care had been infected with the new SARS-CoV-2 virus or not. Jorma Hinkula’s expertise in developing a diagnostic test to determine whether a patient has developed antibodies against the virus would be useful. But he lacked both money and commercially available reliable reagents.

“I was in despair. I remember meeting a colleague who asked why I was looking so depressed. I said that I couldn’t get hold of the reagents for the antibody tests.”

From patient down to the molecular level

The colleague suggested that he contact researchers in structural biology and protein chemists at the Faculty of Science and Engineering in the university. After that, things happened quickly.

“I was given the names of two researchers, who in turn had many contacts. We met for the first time the very next day.” From a position of having nothing, he was suddenly facing an amazing opportunity.

The goal of the researchers was to develop a rapid diagnostic analysis that could demonstrate whether a patient had formed antibodies that could incapacitate the virus.

“It was marvellous to meet these generous researchers who could come up with the first reagents in just a few days, so that we could start using them. I was deeply moved”, says Jorma Hinkula.Eleonore von Castelmur in the lab.Eleonore von Castelmur, expert in structural biology, was one of the researchers in the collaboration, which included also groups led by Maria Sunnerhagen and Daniel Aili at the Department of Physics, Chemistry and Biology, LiU, and researchers at the University of Toronto. Photo credit Anna Nilsen

One of the scientists who got involved in the interdisciplinary collaboration was Eleonore von Castelmur. She studies the structure and function of proteins, and was so fascinated by viruses that she targeted them in her research, to understand them better. Her experience of virus proteins was important to the work.

“We decided to help, so that we could cover the complete pathway here in Linköping, from the patient down to the molecular level. We produced many different variants of the coronavirus spike protein, from small peptide fragments to the complete protein, in our collaboration network”, says Research Fellow Eleonore von Castelmur.3D model of the SARS-CoV-2 spike protein.The spike protein on the virus surface consists of three identical molecules. One of the molecules is shown in rainbow colours, and the surfaces of the other two in grey. The part that the virus uses to enter a cell and infect it is seen at the top (green). Photo credit Eleonore von Castelmur, based on 6VSB/6LZG(SN1b)

Follow patients for several years

The antibody test developed by the researchers showed that most people who are infected develop a protective immunity, which is a great relief. The researchers could also confirm the new diagnostic test for coronavirus in the medical care system. The collaboration is now continuing together with physicians, and patients who have been infected by Covid-19 will be followed for several years.

“The virus can affect many different organs, and maybe it doesn’t behave the same way in the lung as in the intestine or liver. The particular pattern of symptoms displayed by a patient depends on which tissues the virus has infected. And we also don’t know how long the virus can remain in different tissues”, says Jorma Hinkula.

One important question is whether the researchers can find patterns in the immune response that are related to the prognosis. They also want to identify which parts of the virus protein it is most effective to form protective antibodies against – both after infection and after vaccination.3D illustration of the sars-cov-2 spike protein.When the coronavirus infects a cell, the receptor-binding domain (grey and purple) on the virus spike protein binds to a receptor (light green) on the cell. Parts of the protein that play important roles are shown in detail. One of the peptides that the researchers synthesised to use in antibody tests is shown in dark purple. Photo credit Eleonore von Castelmur, based on 6VSB/6LZG(SN1b)

They see several benefits with collaboration between patient-centred research and basic research driven by curiosity.

“In this pandemic, it was an enormous advantage that the scientists had studied coronaviruses for many years, even if these viruses were considered to be relatively mild and slightly weird. This allowed the researchers to map important properties of the new coronavirus in record time. We will not know in advance what causes the next pandemic, so it’s extremely important that basic research is properly funded. You never known when knowledge that has been generated from curiosity-driven research will be decisive in being able to react rapidly”, says Eleonore von Castelmur.

You never known when knowledge that has been generated from curiosity-driven research will be decisive in being able to react rapidly.
Eleonore von Castelmur, Department of physics, chemistry and biology (IFM)


LiU research on COVID-19 and its effects

Latest news from LiU

Sheet of glass with droplet.

Next-generation sustainable electronics are doped with air

Researchers at LiU have developed a new method where organic semiconductors can become more conductive with the help of air as a dopant. The study is a significant step towards future sustainable organic semiconductors.

physicians in a clinica setting.

Healthcare interpreters important for heart attack aftercare

After a heart attack, foreign-born people are less likely to attend a relapse-preventing Heart School than native-born patients. But with access to a professional interpreter, participation increases, according to a new study.

Battery om fingertip.

Eco-friendly and affordable battery for low-income countries

A battery made from zinc and lignin that can be used over 8000 times. This has been developed by researchers at LiU with a vision to provide a cheap and sustainable battery solution for countries where access to electricity is limited.