Materials Laboratory Linköping

Photographer: Olov Planthaber

The Materials Laboratory in Linköping (MALL) is a leading laboratory for materials growth, advanced characterization, and device prototyping at Linköping University.

Atomic-scale synthesis is integrated with high-precision analysis and cleanroom manufacturing to turn ambitious ideas into demonstrated technologies across a wide range of fields, including quantum and wide-bandgap semiconductors, thin film optics, energy conversion and storage, and next-generation electronics.

A ~2000 m2 ISO-classified cleanroom is tightly connected to comprehensive laboratories including thin film deposition, microscopy, spectroscopy, diffraction and scattering, surface and chemical analysis, device fabrication, and electrochemistry. More than 200 instruments throughout materials growth, analysis, and manufacturing support the work.

Research at MALL is application-inspired basic research, focused on designing new materials at the atomic scale and understanding atomistic processes during synthesis of nanostructures and thin films, with the goal of enabling materials and processes that deliver useful properties for society. MALL operates within one of Europe’s strongest materials ecosystems at LiU/IFM, bringing together multiple research groups in an interdisciplinary setting and provides a nationally leading scope and capacity for materials innovation. Collaboration is global by design, connecting with universities, companies, and large-scale research infrastructures world-wide, including synchrotron and neutron sources.


MALL in short

People

Picture of researchers using a transmission electron microscopePhotographer: Olov Planthaber
Collaboration using transmission electron microscopy (TEM)
People: Around 150 senior researchers and ~70 PhD students work across research groups such as Thin Film Physics, Semiconductor Materials, Materials Design, Molecular Surface Physics & Nanoscience, Nanostructured Materials, Nanodesign, Plasma & Surface Engineering, Electronic & Photonic Materials, Sensor & Actuator Systems, Theoretical Physics, and Biophysics & Biotechnology.

Access and training: We offer open access with specialist support and structured user training.

Collaboration: We work globally with universities, research institutes, industry, and large-scale research infrastructures.

Infrastructure

Bild på Focused Ion Beam system (FIB)

Focused Ion Beam system (FIB)
Facilities: We operate a 2,000 m² ISO-classified cleanroom with integrated growth and analysis laboratories.

Integrated capabilities: Our instrument park supports thin-film deposition, microscopy, spectroscopy, diffraction and scattering, surface and chemical analysis, device fabrication, and electrochemistry.

Instruments: Researchers have access to 200+ instruments including growth, characterization, micro/nanofabrication, and device prototyping.

Recent investments: New capabilities include a focused ion beam (FIB) system, advanced SEM (~1 nm resolution), micro-focus and GISAXS-enabled XRD, and femtosecond laser spectroscopy.

Results

Forskare håller en lysande glasplatta i pincett.

Fotograf: Olov Planthaber
Muyi Zhang
Research output: We publish ~350 papers per year in high-impact journals, with a citation base of ~27,500 (2024).

•  Funding & turnover: Our annual research turnover is ~300 MSEK.

•  Ranking: In materials science, LiU is consistently ranked among the leading universities - top in Sweden, top-ten in Europe, and within the global top-100 .

Urban Forsberg.

Boosting Europe's semiconductor manufacturing

LiU has deepened its research collaboration with the German graphite manufacturer SGL Carbon, with the long-term aim of strengthening European semiconductor manufacturing. Together, they have developed a purpose-built CVD tool on Campus Valla.

LiU researchers on the list of the world’s most cited

Researchers from LiU among the world’s most influential. Clarivate has once again listed those who rank within the top one per cent most cited in their research fields.

Per Persson infront of Ångströmhuset.

National research infrastructure secures continued funding

The Swedish Research Infrastructure for Advanced Electron Microscopy, ARTEMI, has secured funding from the Swedish Research Council for another two years. It is crucial for advanced research in materials science, inorganic chemistry and physics.

Johanna Rosén.

Johanna Rosén elected to the Royal Swedish Academy of Sciences

Linköping professor Johanna Rosén has been elected as a new member of the Royal Swedish Academy of Sciences, KVA, in the class for engineering sciences. She is one of five new members.

A man in a lab applies water to the surface of a yellow-green material.

More effective production of “green” hydrogen with new combined material

Hydrogen produced from water is a promising renewable energy source – especially if the hydrogen is produced using sunlight. Now LiU researchers show that a combination of new materials improves the efficiency of the chemical reaction several times.

Portrait (Feng Gao).

Prestigious physics award for Feng Gao

This year's Göran Gustafsson Prize in Physics goes to LiU professor Feng Gao. His research focuses on how new materials can be used for the next generation of solar cells and LEDs, among other things. The total prize money is SEK 7.5 million.

Current research

Explore our ongoing research

Competitive co-diffusion for conformal CVD

Xe added as an inert diffusion additive during B₄C CVD (from TEB) raises step coverage from 0.71 to 0.97 in 10:1 aspect ratio trenches, while preserving film composition and density. Conformal penetration is also achieved in lateral high-aspect-ratio features (≥50:1). A heavier background gas likely modifies precursor transport and promotes desorption of intermediates, providing a simple handle to tune conformality in demanding geometries.

Responsible researcher: Henrik Pedersen

Heavy-gas–assisted superconformal ALD 

Using a heavy inert diffusion additive for superconformal atomic layer deposition where Kr is added to the ALD process for AlN from TMA and NH3 modifies the precursor distribution in recessed features and enhances film deposition at the bottom of the trenches. Step coverage in an 18:1 aspect ratio feature increased from 1 to 1.6. Five hundred ALD cycles render 24 nm at the top surface and 39 nm at the bottom of the trench. The heavier Kr promotes the diffusion of the lighter NH3 down the trenches and could enhance the surface desorption which results in a lower GPC at the trench openings. XPS shows that the material quality is not changed when going deep inside the feature. The approach is applicable to many ALD processes.

Responsible researcher: Henrik Pedersen

Carbon-driven polytype control in epitaxial BN

Boron nitride is a promising two-dimensional material and a potential wide-bandgap semiconductor. CVD with organoboranes (TEB, TMB) yields h-BN that nucleates epitaxially (~4 nm) before a polytype transition to r-BN, evolving into less ordered turbostratic BN, or terminating by amorphous carbon. High resolution TEM and EELS show that carbon originating from the precursors deposits on the epitaxially growing h-BN surface and leads to polytype transition or complete surface poisoning with carbon terminating BN growth. The results question the use of organoboranes for CVD of high-quality epitaxial BN films and the polytype stability of h-BN on carbon-rich substrates such as graphene.

Responsible researchers: Henrik Pedersen and Hans Högberg

MXenes: synthesis, properties, and integration

Two-dimensional carbides and nitrides (MXenes) offer tunable electronic, optical, mechanical, and electrochemical properties for applications including energy storage, electromagnetic interference shielding, wireless antennas, sensing, and medicine. Vapor phase synthesis is needed for integration on chips using current microfabrication device technology and large scale environmentally friendly synthesis methods are key for wide use in future additive manufacturing technologies. Discovery of new MXenes and combination with other materials in two dimensional heterostructures will enable new properties and expand use in flexible devices actuators optical lenses artificial memory devices and quantum computing.

Responsible researcher: Johanna Rosén

Towards wafer-scale “goldene” (single-atom Au)

Free-standing, one-atom-thick Au sheets produced from Au-intercalated MAX phases exhibit predicted graphene-like conductivity, strong flexibility, and corrosion resistance, enabling ultra-fine traces, stretchable interconnects, and drastically reduced Au consumption in electronics. Ongoing work targets wafer-size synthesis, property testing, and device fabrication.

Responsible researcher: Johanna Rosén, Lars Hultman and Shun Kashiwaya

Nano engineering for next-generation thin-film neutron optics

Sub-nanometer control of multilayers improves performance of key neutron-optical elements. ¹¹B₄C incorporation into Fe/Si multilayers enables higher reflectivity, improved polarization, reduced diffuse scattering, and lower roughness correlation. Adding 11B4C in Ni/Ti multilayers reduces interface widths from ~0.7 nm to ~0.3 nm and supports high-m waveguide designs. CrBₓ/TiBᵧ superlattices show single-crystal quality with ~monolayer interface widths, targeting high-reflectivity Fermi choppers. Low-temperature CVD yields fully conformal 10BxC at 450 °C with B/C > 4 for solid-state neutron-detector concepts, supporting instrument layouts that deliver higher neutron flux to samples.

Responsible researcher: Jens Birch and Fredrik Eriksson

Defects in silicon carbide for quantum spintronics

Single silicon vacancies and divacancies in 4H-/6H-SiC act as room-temperature spin qubits with long coherence times and optical addressability near telecom wavelengths. Charge-state control in p-i-n diodes, implantation into nanophotonic waveguides, and deterministic coupling to nearby nuclear spins enable initialization, coherent control, and entanglement of multi-spin registers. Wafer-scale material quality and mature nanofabrication provide a platform for quantum sensing and information devices based on stable color centers.

Responsible researchers: Ivan Ivanov and Tien Son Nguyen

Magnetron sputter epitaxy of nitride semiconductor nanostructures

Ultrahigh-vacuum magnetron sputter epitaxy produces high-purity GaN and InAlN nanostructures. Straight, diameter-controlled nanorods, inclined and curved rods, nanochevrons, and chiral nanospirals. Diffusion-induced growth links rod length to inverse diameter and temperature, enabling geometry control for photonics, gas sensing, and high-power/optoelectronic devices. Arrays provide large junction area, low defect density, minimal substrate coupling, and periodic order for photonic engineering, including Fabry–Pérot-type nanocavity lasing and chiral nanophotonic responses.

Responsible researchers: Jens Birch and Ching-Lien Hsiao

Bioresponsive materials

Bioresponsive materials are designed to interact dynamically with their biological environment, enabling controlled therapeutic release and real-time diagnostic feedback. By integrating stimuli-responsive components, such as peptides, enzymes, or redox-active elements, into soft material matrices like hydrogels, nanocellulose, or liposomes, these systems can sense biochemical cues and respond through structural or functional changes. Such adaptive materials allow localized delivery of antimicrobial or anticancer agents, modulation of degradation and mechanical properties, and optical or colorimetric readouts of biological activity. This convergence of responsive chemistry, therapeutic functionality, and diagnostic capability defines a new generation of precision biomaterials for wound care, drug delivery, and regenerative medicine.

Responsible researcher: Daniel Aili

Emerging Optoelectronic Devices

We are investigating two promising classes of materials—organic semiconductors and metal halide perovskites—that have the potential to revolutionize technologies such as solar panels, LED lighting, lasers, and sensors. Organic semiconductors are composed of carbon-based molecules. They are lightweight, flexible, and can be manufactured using straightforward, solution-based techniques. Metal halide perovskites, on the other hand, are crystalline materials known for their exceptional light absorption and efficient charge transport. These materials can be tuned to emit different colors and exhibit a remarkable tolerance to defects. While both material systems show great promise, several challenges remain. For example, we need improved methods for forming uniform thin films, minimizing defects, and enhancing stability under exposure to moisture, light, and electrical stress. Additionally, there is a growing emphasis on adopting environmentally sustainable fabrication approaches, developing scalable recycling strategies, and evaluating the full life cycle of these devices. Our research focuses on developing innovative strategies and deepening our understanding of these materials to address these challenges and advance device performance.

Responsible researcher: Feng Gao

Infrastructure

MALL is tightly integrated with large-scale research infrastructures. In Sweden, we use ARTEMI, the national infrastructure for advanced electron microscopy that conects leading electron microscopy nodes and provides coordinated access to state-of-the-art microscopes and expertise.

We use NAISS for high-performance computing, AI, and data services that support materials simulations, analysis, and FAIR data, hosted by Linköping university.

For synchrotron X-rays we engage with MAX IV, Sweden’s national synchrotron laboratory, and with CeXS, which is the academic host of the Swedish Materials Science Beamline at PETRA III. Through CeXS, Swedish users gain access to all DESY-operated beamlines at PETRA III, and Linköping university co-hosts the beamline and is a core partner in the center. Internationally, our researchers are frequent users of synchrotron and neutron facilities worldwide, e.g., PETRA III, ESRF, and Diamond for X-rays, and ISIS, ILL, PSI, and the emerging ESS for neutrons.

Organisation

In Linköping, materials research is conducted in a number of different constellations. There are departments that were established as early as the 1960s when Linköping University was new, as well as completely new groups. Together, they often collaborate across boundaries within strategic research areas (AFM), profile areas (LSX and MATTER), or in smaller partnerships.

Divisions and research groups

Electronic and photonic materials (EFM)

Our division's research is focused on the development of organic electronics for energy conversion and storage.

A light-green thin sheet is immersed in water.

Semiconductor Materials (HALV)

Our division develops and investigates materials for novel electronics with the main focus on silicon carbide, III-nitrides and graphene.

Group picture

Pedersen Group

The Henrik Pedersen research group at Linköping University is working on chemical vapour deposition (CVD) with the aim to develop better CVD routes to, primarily, electronic materials.

SFO, profile areas and centers

Financing and partners

Research at MALL is supported by a broad mix of national and European agencies. Core financing support comes from the Swedish Research Council (VR), the Swedish Foundation for Strategic Research (SSF), the Knut and Alice Wallenberg Foundation (KAW), including the national WISE program, Vinnova, the Strategic Research Area in Advanced Functional Materials (AFM at LiU), and the European Union.

We also participate in major research initiatives such as VR Linnaeus Centers and Vinnova VINNEX programs, and have secured competitive European Research Council (ERC) awards, including an ERC Advanced Grant. Together, these funding agencies enable sustained materials research, talent development, and investments in strategic instrumentation that advance materials science at MALL.

Publications

2026

Marcus Lorentzon, Naoki Takata, Diederik Depla, Tianqi Zhu, Grzegorz Greczynski, Rainer Hahn, Anton Zubayer, Justinas Palisaitis, Helmut Riedl, Dasom Kim, Lars Hultman, Jens Birch, Naureen Ghafoor (2026) Growth mechanisms and mechanical response of 3D superstructured cubic and hexagonal Hf1-xAlxN thin films Acta Materialia, Vol. 302, Article 121680 (Article in journal) Continue to DOI
Zhehao Chen, Aslak J. J. Fellman, Katarzyna Mulewska, Kenichiro Mizohata, Davide Gambino, Yanling Ge, Eryang Lu, Flyura Djurabekova, Andreas Delimitis, Lukasz Kurpaska, Filip Tuomisto, Kostas Sarakinos (2026) Formation of coherent nanocomposite structure in nickel-aluminum alloys synthesized far from equilibrium Acta Materialia, Vol. 302, Article 121674 (Article in journal) Continue to DOI
Arnaud le Febvrier, Sanath Kumar Honnali, Charlotte Poterie, Tiago V. Fernandes, Robert Frost, Vladyslav Rogoz, Martin Magnuson, Fabien Giovannelli, Joaquim P. Leitão, Jean Francois Barbot, Per Eklund (2026) Strain engineering of ScN thin films and its effect on optical, electrical, and thermoelectric properties Journal of Materials Chemistry A (Article in journal) Continue to DOI
Sanjay Chakraborty, Jonas Björk, Martin Dahlqvist, Johanna Rosén, Fredrik Heintz (2026) A survey of AI-supported materials informatics Computer Science Review, Vol. 59, Article 100845 (Article in journal) Continue to DOI
Ali Saffar Shamshirgar, Roman Ivanov, Sofiya Aydinyan, Sohan Ghosh, Florian Chabanais, Rodrigo Ronchi, Joseph Halim, Anna Elsukova, Leiqiang Qin, Khachik Nazaretyan, Marieta Zakaryan, Suren Kharatyan, Per O A Persson, Irina Hussainova, Johanna Rosén (2026) Rapid and scalable combustion synthesis of (Mo2/3Y1/3)2AlC i-MAX as the precursor for vacancy-ordered MXene Journal of Materials Science & Technology, Vol. 255, p. 157-169 (Article in journal) Continue to DOI
Valentina Guerrero Florez, Elisa Zattarin, Lalit Pramod Khare, Emanuel Wiman, Torbjorn Bengtsson, Hazem Khalaf, Johan Junker, Lars Ojamäe, Magnus Odén, Daniel Aili, Emma Björk (2026) Protein-capped mesoporous silica SBA-15 enables protease-responsive and controlled antimicrobial peptide delivery Journal of Colloid and Interface Science, Vol. 703, Article 139151 (Article in journal) Continue to DOI

2025

Rui Ji, Jiasha Wu, Luyi Wang, Fusheng Xu, Jiwen Hu, Yejiao Shi, Siyao Liu, Feng Xu, Xiaochun Hu, Honggang Hu (2025) Targeted GPX4 Degradation Mediated by Hypoxia-Overcoming Nano-PDTACs for Synergistic Ferroptosis-Immunotherapy Advanced Healthcare Materials (Article in journal) Continue to DOI
Zsolt Benedek, Adam Ganyecz, Anton Pershin, Viktor Ivady, Gergely Barcza (2025) Accurate and convergent energetics of color centers by wavefunction theory npj Computational Materials, Vol. 11, Article 346 (Article in journal) Continue to DOI
Sanjay Kumar, Bartosz Wicher, Grzegorz Greczynski (2025) Time-resolved ion mass spectrometry analysis reveal high Bi2+ and Bi3+ ion fluxes during high-power impulse magnetron sputtering of Bi target Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films, Vol. 43, Article 063006 (Article in journal) Continue to DOI
Yusuf Wibisono, Wahyunanto Agung Nugroho, Iqbal Shalahuddin, Fajri Anugroho, Wetra Yandi (2025) Surface-grafted SPMA hydrogels enable durable microalgal antifouling on polymeric membranes Algal Research, Vol. 92, Article 104404 (Article in journal) Continue to DOI