Måndag 12 december 2022, kl 13.15-14.00 i Mångfalden, Mikael Rönnqvist, Université Laval
Titel: Maritime Vessel Routing
Sammanfattning: True North Marine (TNM) is a Montreal based consulting company offering services on route selection and analysis to ocean-going vessels, operators and owners. The need for optimized routing has gained relevance in the age of JIT arrivals, fluctuating fuel costs and tightening emission standards. The efficient route requires a deep understanding of the interplay between fuel consumption, vessel speed and safety depending on the weather. Today, there are many high accuracy sources on ocean currents and seas and winds, the three primary weather elements that go towards route planning. Other important information that affects a voyage planning include among others; storm locations and movements and their historical tracks, wind speed and direction, sea currents, wave height and frequency. The weather condition is vital in the route planning. The IMO (International Maritime Organization) has implemented new regulations, as of January 1st 2020, requiring vessels to burn fuel with much lower sulphur content (drop from 3.5% to 0.5%) with anticipated effect that fuel costs for vessel operators will significantly rise. It is hence expected that new vessel routes better must balance operational cost, fuel and greenhouse gas (GHG) emission cost, and weather-related safety issues. True North Marine is working together with Université Laval, HEC Montreal and UQTR (University Quebec Trois-Rivieres) in a project funded by IVADO, Prompt and MITACS to develop advanced analytics tools to support the planning process. More specifically, these tools allow analyzing many routes in order to determine the optimal speed / fuel consumption setting and best route option based on forecast weather data, historical weather data, vessel characteristics and data obtained from monitoring past performance of vessels. In this presentation, we provide an insight in the practical planning process and analytics tools developed so far to support the planners which will go towards more precise and dynamic routing
Onsdag 16 november 2022, kl 09.00-10.00 i Åskådliga rummet, Marduch Tadaros, Luleå Tekniska Universitet
Titel: The Hierarchical Multi-Switch Multi-Echelon Vehicle Routing Problem: Model Formulations and Solution Approaches
Sammanfattning: In today's society, transports are essential to secure necessary products and services to maintain our standard of living. Given the importance of transportation and logistic services and their impact on the environment, economy, and people's lives, it is in everyone's interest that these transports are as efficient as possible. This presentation will discuss the Hierarchical Multi-Switch Multi-Echelon Vehicle Routing Problem, a newly introduced variant of the well-known Vehicle Routing Problem. It is a real-world problem originating from the policies of a Nordic distribution company.
The problem includes
- a single depot,
- a non-predetermined hierarchy of intermediate facilities, and
- two different fleets consisting of homogeneous original and homogeneous local vehicles pulling swap-bodies.
Original vehicles with attached swap-bodies depart from the central depot. They can either visit customers directly if only one swap-body is attached or visit one or two consecutive switch points in order to transfer one or two loaded swap-bodies to a corresponding number of local vehicles, which are subsequently routed to customers while the original vehicle itself proceeds to serve customers with the remaining loaded swap-body. We will cover a brief description of the problem and different model formulations. Furthermore, the properties of the problem and the difficulties in solving instances using a commercial solver. Different solution approaches for solving realistic-sized instances from which the problem originated will also be discussed before we conclude with possible directions for further research.
Torsdag 17 november 2022, kl. 15.15-16.00 (online), Jonas Olsson, Deliveroo
Titel: Route optimisation of takeaway food delivery
Sammanfattning: Deliveroo is a British online food delivery company, currently operating in 11 countries. It serves a three-sided marketplace of consumers, restaurants/grocers and riders. Consumers order restaurant food and groceries to their doors through the Deliveroo app or website. The Dispatcher algorithm is responsible for planning routes for riders to pick up and deliver orders. The routing problem is both large and dynamic (new orders received, riders going online/offline, rider locations change, riders accept/reject order assignments). In this talk, we will discuss the problem definition, why the problem is hard to solve, and considerations for our approach. We will also touch on what it is like working with Operational Research at Deliveroo.
Google Meet-länk
Onsdag 28 september 2022, kl 14.00-15.00 i Mångfalden, Michael Saunders, Stanford University
Titel: Algorithms for Constrained Optimization: The Benefits of General-purpose Software
Sammanfattning: We review the history of numerical optimization and describe some (unexpected) applications of general-purpose software in aerospace, signal analysis, systems biology, economics, radiotherapy.
Onsdag 22 juni 2022, kl. 10:15, Presentation av examensarbete på kandidatnivå, Erik Thomas
Opponent: Gustav Villwock
Handledare: Kaj Holmberg
Examinator: Torbjörn Larsson
Lokal: Hopningspunkten, B-huset, ingång 23-25, A-korridoren, plan 2, Campus Valla
Titel: Improving snow removal plans through task reassignment
Sammanfattning: TB
Tisdagen 14 juni 2022, kl. 10:15, Presentation av examensarbete på kandidatnivå, Anna Tarasova
Opponent: Beatrice Söderqvist
Handledare: Roghayeh Hajizadeh
Examinator: Kaj Holmberg
Lokal: Hopningspunkten, B-huset, ingång 23-25, A-korridoren, plan 2, Campus Valla
Titel: Tour expansion in snow removal problem
Sammanfattning: The process of removing snow from the streets of cities in an optimal way can pose quite a challenge. In order to optimize the path of the snow removing vehicle, the city can be translated into a graph with nodes as crossings and links as roads. Once the city is modelled as a graph, all nodes with degree one can be eliminated and the snow removal time is added to the closest node. An optimization problem can then be solved in order to find a vehicle path in this reduced graph. The purpose of this thesis is to give an algorithm to reconstruct the reduced graph and then dictate the proper vehicle path in this reconstructed graph. The algorithm is constructed by reversing the node elimination process, piecing together the original graph and traversing the graph to get information about what to do on the eliminated links and nodes. The obtained algorithm is presented in this thesis.
Fredag 10 juni 2022, kl. 10:15, Presentation av examensarbete på kandidatnivå, Simon Calderon
Opponent: Gustav Eriksson
Handledare: Anders Peterson
Examinator: Kaj Holmberg
Lokal: Hopningspunkten, B-huset, ingång 23-25, A-korridoren, plan 2, Campus Valla
Titel: An ILP-model for the train platforming problem
Sammanfattning: The goal of this thesis is to create an optimization model to optimize the routing of trains within railway stations. This problem is known as the train platforming problem, and the model we present is a Integer programming model. By this model we aim to optimize factors such as walking distance, switch usage or platform usage. We validate the model by implementing the model for Linköping station, which is a typical mid size station in the Swedish railway network. This implementation is done for different time horizons, ranging from 2 hours to one day, and from 27 to 265 trains. In conclusion we see that model is efficient for optimizing the train platforming problem for the implemented station and timetables, and see that the model has possibility to optimize the four objectives tested. Furthermore we see that optimizing certain objectives gives solutions that are also good with regards to other objective functions.
Onsdag 8 juni 2022, Presentation av examensarbete på masternivå
Framläggningarna kommer att ske i BL33 Samtliga framläggningar kan följas via Zoom, men vi accepterar enbart auskultationer på plats.
Klockan 13.15 Måns Alskog
Opponenter: Lina Larsson, Mikaela Lindberg
Handledare: Christiane Schmidt (ITN), Hannes Uppman (Saab)
Examinator: Elina Rönnberg
Titel: Implementation of a Fast Approximation Algorithm for Precedence Constrained Scheduling
Sammanfattning: We present a practical implementation of a recent approximation algorithm for scheduling jobs on a single machine with precedence constraints, minimising the total weighted completion time. The algorithm, which was published by Li in 2021, is a (2+ε)-approximation algorithm with run time O(n+k)⋅polylog(n+k)⋅log³(maxⱼ pⱼ)⋅1/ε²), where n is the number of jobs, k is the number of precedence constraints and maxⱼ pⱼ is the largest of the processing times of the jobs. Unlike other approximation algorithms for this problem, this algorithm has been developed with a focus on obtaining a good asymptotic run time guarantee, rather than obtaining the best possible guarantee on the quality of solutions. Finally, we empirically evaluate how well (our implementation of) this algorithm performs in practice.
Klockan 14.15 Alexander Grgic och Filip Andersson
Opponenter: Måns Alskog
Handledare: Elina Rönnberg (MAI), Emil Karlsson (Saab)
Examinator: Nils-Hassan Quttineh
Titel: Using maximal feasible subset of constraints to accelerate a logic-based Benders decomposition scheme for a multiprocessor scheduling problem
Sammanfattning: Logic-based Benders decomposition (LBBD) is a strategy for solving discrete optimisation problems. In LBBD, the optimisation problem is divided into a master problem and a subproblem and each part is solved separately. LBBD methods that combines mixed-integer programming (MIP) and constraint programming (CP) have been successfully applied to solve large-scale scheduling and resource allocation problems. This combination typically solves an assignment master problem and a scheduling-type subproblem. However, a challenge with LBBD methods that have feasibility-type subproblems are that they do not provide a feasible solution until an optimal solution is found.
In this master thesis, we show that feasible solutions can be obtained by combining feasible parts of an infeasible master problem assignment. We use these insights to develop an acceleration technique for LBBD that solves a series of subproblems, according to algorithms for finding a maximal feasible subset of constraints (MaFS). Using a multiprocessor scheduling problem as a benchmark, we study the computational impact from using this technique. We evaluate three variants of LBBD schemes. The first uses MaFS, the second uses irreducible subset of constraints (IIS) and the third combines MaFS with IIS. Computational tests were performed on an instance set of multiprocessor scheduling problems. In total, 83 instances were tested, and their number of tasks varied between 2794 and 10,691. The results showed that when applying our acceleration technique to the decomposition scheme, the pessimistic bounds were strong, but the convergence was slow. The decomposition scheme combining our acceleration technique with the acceleration technique using IIS showed some potential to accelerate the method.
Klockan 15.15 Lina Larsson och Mikaela Lindberg
Opponenter: Alexander Grgic och Filip Andersson
Handledare: Nils-Hassan Quttineh (MAI), Lars Abrahamsson & Jonas Funkquist (Vattenfall)
Examinator: Elina Rönnberg
Titel: Modeling the Head Effect in Hydropower River Systems using MILP and BLP Approaches
Sammanfattning: With the fast-growing electricity demand and a larger proportion of intermittent energy sources follows a greater need for flexible and balancing sources of electricity, such as hydropower. Planning of hydropower production turns out to be a difficult problem to solve due to several nonlinearities, combinatorial properties and the fact that it is a large scale system with spatial-temporal coupling. Optimization approaches are used for solving such problems where a common simplification is to disregard the effect of head variation on the power output. This thesis presents two methods for modeling the head dependency in optimization models for hydropower river systems, the Triangulation method and the Bilinear method. The Triangulation method implements a three-dimensional interpolation technique called triangulation, using a MILP formulation. The Bilinear method applies a piecewise bilinear approximation for the power production function, resulting in a BLP problem. A strategy for selecting which hydropower stations to include head dependence for is also provided. The performance of the methods was evaluated on authentic test cases from the Lule River and compared to results obtained by Vattenfall’s current model without head dependency. The results indicate that the Triangulation method, as well as the Bilinear method, outperform the current model regarding accuracy. However, the run time of the developed methods is sometimes considerably longer.
Onsdag 25 maj 2022, Presentation av examensarbete på kandidatnivå Ida Vickes Åkerholm
Framläggningen sker i Kompakta rummet klockan 13.15.
Opponent: Jakob Jonsson
Handledare: Nils-Hassan Quttineh
Examinator: Torbjörn Larsson
Titel: Lagrangian Bounding and Heuristics for Bi-Objective Discrete Optimisation
Sammanfattning: For larger instances of multi-objective optimisation problems, the exact Pareto frontier can be both difficult and time consuming to calculate. There already exists a wide range of methods to find feasible solutions to these problems, but techniques for finding good optimistic bounds to compare the feasible solutions with are missing. In this study, the use of Lagrangian relaxation to create optimistic bounds to bi-objective optimisation problems is investigated. The aim is to develop an effective method that produces optimistic bounds closer to the Pareto frontier than the commonly used linear programming relaxation.
To use Lagrangian relaxation on the bi-objective problem, the objectives are combined to one using the weighted sum method. The Lagrangian dual function is then constructed by relaxing the complicating constraints and the subgradient method is used to optimise the dual problem in order to find an optimistic solution. By solving this problem for multiple weights, an optimistic bound to the Pareto frontier can be constructed. The subgradient method also require a heuristic to find feasible points. The feasible solutions found by the heuristic form a pessimistic bound to the frontier.
The method has been implemented and tested on multiple problem instances of a capacitated facility location problem with cost and CO2 emission as objectives. The results indicate that, by using Lagrangian relaxation, an optimistic bound close to the Pareto frontier can be found in a relatively short time. The heuristic used also manage to produce a good pessimistic bound and hence the Pareto frontier can be enclosed. The optimistic bounds found by Lagrangian relaxation are better and more consistent along the Pareto frontier compared to the bounds found by linear programming.
Fredag 6 maj 2022, Jan Rolfes, KTH
Titel: Distributionally robust optimization with envelope and moment information
Sammanfattning: Driven by an application from chromatography, we model an optimization problem with linear objective subject to robust constraints that depend on an uncertain particle size distribution (psd).
Without further restrictions on the moments of this psd the problem would be too conservative. Thus, we combine a generalized form of the classical moment constraints by Shapiro with a set of confidence set constraints on the psd. The latter are informed by an envelope around the psd. Thereby, we decrease the conservatism in our model and aim to optimize the fractionation process together with our colleagues in process engineering.
Fredag 22 april 2022, Henrik Andersson, NTNU
Titel: A matheuristic for the production routing problem
Sammanfattning: We will discuss the production routing problem, where a product is produced at a single plant and then distributed by trucks to a set of retailers over a defined planning horizon. A production schedule for the plant, together with a distribution schedule for the retailers and routes for each vehicle, must be decided. The goal is to minimize production and transportation costs, in addition to inventory holding costs. We present a multi-start route improving matheuristic to solve the problem. In each restart, a valid solution to the problem is constructed, and its routes are used as input to a novel path-flow-inspired model that allows for alterations to the routes. This path-flow-inspired model is re-solved for several iterations.
Måndag 25 april 2022, Presentation av examensarbete på masternivå Saga Fahlén
Framläggningen sker i Hopningspunkten klockan 15.15.
Titel: Prediction of the Impact of Increased Photovoltaics Power on the Swedish Daily Electricity Spot Price Pattern
Sammanfattning: As the demand for electricity increases throughout the globe while we want to reduce the use of fossil fuels, the need for renewable energy sources is bigger than ever. In countries where solar power make up a large part of the total energy production, the overall electricity spot price level has become lower. This thesis investigate the underlying mechanism that drives the energy market, and in specific, how the solar power impacts the electricity spot price. We present results from studies made in other markets, and introduce a regime switching model for explaining the impact in Sweden. We show that an increase of photovoltaics power has a price lowering effect on the dailyprice pattern in price areas SE3 and SE4.
Torsdag 14 april, 2022 Presentation av examensarbete på kandidatnivå, Gustav Villwock
Opponenter: Eric Thomas och Herman Singh. Handledare: Nils-Hassan Quttineh. Examinator: Torbjörn Larsson.
Titel: Workforce Scheduling for Flamman Pub & Disco
Sammanfattning: Workforce scheduling is widely used within most industries. A well outlined and efficient schedule gives cost savings, such as reduced wages for working overtime, increases overall resource utilization, and facilitates meeting demands. This thesis evaluates two different methods for implementing a workforce scheduling system for Flamman Pub & Disco, one of Linköping's most well-known restaurants and bars for students. Flamman recruits new staff prior to every semester, and the workforce typically consists of around 100 employees that work either in the bar or in the kitchen. Historically, the scheduling process has been handled manually in Excel, and takes time for the operations manager.
This thesis suggests an automated scheme for future scheduling processes, using mixed integer programming and heuristics. Literature studies have shown that heuristics, such as large neighbourhood search, can generate sufficient performance for this kind of problems. Therefore, to avoid expensive licensed optimization software, we investigate the use of a free-of-charge software based on a heuristic. The results show that a heuristic can be a helpful tool for upcoming recruitment periods. However, we recommend areas for improvement regarding the heuristic.
Fredag 1 april 2022, Niki Matinrad, ITN
Titel: Models for Dispatch of Volunteers in Daily Emergency Response
Sammanfattning: Sufficient emergency resources are essential for emergency services to provide timely help to affected people and to minimize damage to public and private assets and the environment. Emergency services, however, face resource shortages and increasing demand over time. As a result, their response times increase, resulting in lower survival chances of affected people and more severe damage to properties and the environment. Thus, emergency services need to utilize and effectively manage all their available resources. These can be divided into traditional resources, such as ambulances, and new and emerging resources, such as volunteers. Models and methods developed using operations research (OR) methodologies can facilitate the management of these resources. However, despite a rich literature on OR-based models and methods focusing on traditional resources, the literature on new and emerging resources, and specifically volunteers, is scarce.
The aim of this study is to develop models and methods for task assignment and dispatch of volunteers to daily medical emergencies. The developed models and methods consider volunteer programs in Sweden and the Netherlands, employing real historical data. The aim is addressed in two steps. First, different types of new and emerging resources used in daily medical emergency response are investigated. Then, in the core part of the study, the focus is on the development of models, methods, and strategies for task assignment and dispatch of volunteers to out-of-hospital cardiac arrest (OHCA) cases using OR, specifically optimization and simulation. To evaluate the survival rates of these patients, the most important health outcome of a response process, survival functions have been used in the development of these models and strategies. In this part of the study, first, a simplified setting for the dispatch of volunteers is considered where all aspects are deterministic. Then, to depict the reality better, different uncertain elements are included in different models and methods; examples of these elements are the uncertainties associated with the actions of volunteers once they are assigned a task are considered, the uncertainty of notification acceptance, the uncertainties related to the travel times of volunteers and EMS, presence of bystanders on site, and the availability of mobile automated external defibrillators (AEDs).
The overall conclusion of this study is that the use of OR-based models and methods can contribute to improved outcomes and increased survival probabilities compared to the strategies and techniques used in the existing systems.
Fredag 8 april 2022, Jan Kronqvist, KTH
Titel: A disjunctive perspective on mixed-integer optimization
Sammanfattning: Disjunctive programming is an alternative approach towards modelling mixed-integer problems introduced by Egon Balas in the 70s. The key component in disjunctive programs is so called disjunctive constraints that forces the solution to satisfy one set of constraints from a collection of constraints. The feasible set is of a disjunctive constrain is, thus, the union of a finite number of sets. However, disjunctive programs cannot be directly solved as such. Instead they are normally transformed into classical mixed-integer problems and solved as such. It is, therefore, fair to ask “what’s the point of disjunctive programming“.
In this seminar, we will look at how we can benefit from viewing mixed-integer problems as disjunctive problems and a new hierarchy of formulations for expressing disjunctive constraints in classical mixed-integer programming form.
Fredag 4 mars 2022, Justin Pearson, Uppsala universitet
Titel: Declarative Local Search with MiniZinc
<p">Sammanfattning: In this talk I will give an overview of ongoing research at Uppsala on a fully declarative local search solver using MiniZinc. MiniZinc is a high-level language that allows combinatorial (optimisation) problems to expressed at a high-level, similar in spirit to languages such as GAMS and AMPL. The MiniZinc tool chain provided interfaces to solvers using many different solving technologies, such as constraint programming, Boolean satisfiability (SAT) solvers, mixed-integer programming solvers and many more.</p">
Local search is a widely used solving paradigm where an initial random assignment is modified by local moves that attempt to move the assignment closer to a solution. On large combinatorial problems, local search can be a very effective heuristic. Unfortunately to be effective the types of local moves have to be hand crafted for the individual problem that is been considered.
For a number of years at Uppsala we have been developing a back-end to MiniZinc that will automatically implement local search algorithm given a MiniZinc model. This is joint work with Gustav Björdal, Frej Knuter Lewander, and Pierre Flener.
Onsdag 23 februari 2022, kl 13:15-14:15, Tatiana Tchemisova, University of Aveiro, Portugal
Anordnas i samarbete med Matematiska kollokviet.
Titel: On phenomenon of Immobility in study of convex Optimization problems
Sammanfattning: We are concerned with convex problems of infinite Optimization, namely problems of convex Semi-Infinite Programming (SIP) and linear problems of Semidefinite Programming (SDP).
Semi-Infinite Programming deals with extremal problems that consist in minimization of an objective function of finitely many variables in a set described by an infinite system of constraints. SIP models appear in different fields of modern science and engineering where it is necessary to simulate a behavior of complex processes whose models contain at least one inequality constraint for each value of some parameter (for example, time) varying in a given compact domain.
In Semidefinite Programming, an objective function is minimized under the condition that some matrix valued function is positive semidefinite. When the objective function is linear and the matrix valued function is an affine combination of some symmetric matrices, we get a convex problem. There are many applications of SDP models to combinatorial optimization, control theory, approximation theory, etc.
Optimality conditions for Optimization problems are of special interest both from theoretical and practical points of view. A special attention is devoted to the results that do not need additional conditions on the constraints, so called constraint qualifications (CQ).
In the talk, we present the results on optimality and strict duality for convex Semi-Infinite Programming problems which are obtained based on a new concept of immobile indices of constraints. We show how this concept can be applied to problems of linear SDP . The main result consists in new CQ-free optimality conditions for the considered classes of Optimization problems.
Fredag 25 februari 2022, Elina Rönnberg, Matematiska institutionen, Linköpings universitet
Titel: Integer programming column generation: Accelerating branch-and-price using a novel pricing scheme for finding high-quality solutions in set covering, packing, and partitioning problems
Författare: Stephen J. Maher and Elina Rönnberg
Sammanfattning: Large-neighbourhood search (LNS) heuristics are important mathematical programming techniques that search for primal feasible solutions by solving an auxiliary problem with a restricted feasible region. Extending such powerful generic LNS heuristics to the branch-and-price context is inherently challenging. The most prominent challenges arise from the fact that in branch-and-price algorithms, columns are generated with the sole aim to solve linear programming relaxations. Hence, the ability to form integer feasible solutions is not considered during the generation of columns. Without any changes to the standard pricing schemes, the potential of deploying generic LNS heuristics within a branch-and-price procedure is severely limited.
This paper proposes a matheuristic, based on an LNS heuristic framework, where the novelty is a customised pricing scheme for generating columns to solve an auxiliary problem. The theoretical foundation for this pricing scheme is a set of optimality conditions for integer programs. From this foundation, a column generation strategy is developed for finding columns that are likely to be of use in high-quality primal feasible solutions for the original problem.
The proposed matheuristic is implemented in the generic branch-price-and-cut solver GCG. On a broad test set comprising classical block diagonal structured instances and general instances from the MIPLIB 2017 Collection, the computational results show a significant improvement to the solving performance of GCG.