26 March 2020

Researchers at Linköping University have discovered a quantum phenomenon that influences the formation of free charges in organic solar cells. “If we can properly understand what’s going on, we can increase the efficiency”, says Olle Inganäs, professor emeritus.

Qingzhen Bian
A remarkable waveform appeared in Qingzhen Bian's experiment. Photographer: Magnus Johansson
Doctoral student Qingzhen Bian obtained unexpected results when he set up an experiment to optimise a solar cell material consisting of two light-absorbing polymers and an acceptor material. Olle Inganäs, professor emeritus in the Division of Biomolecular and Organic Electronics asked him to repeat the experiment to eliminate the possibility of measurement errors. Time after time, and in experiments carried out both at LiU and by colleagues in Lund, the same thing happened: a tiny periodic waveform lasting a few hundred femtoseconds appeared in the signature from the optical absorption as a photocurrent formed in the solar cell material. What was going on?

The explanation has been published in Nature Communications.

Remarkable waveform

Some background: When light in the form of photons is absorbed in a semi-conducting polymer, an exciton forms. Excitons are bound electrone-hole pairs in the polymer. The electrons are not released, and the transport of charges, the photocurrent, does not arise. When the electron-donating polymer is mixed with a molecule that accepts electrons, the electrons can be released. The electrons then only need to take a small jump to become free, and the loss of energy is kept to a minimum. The holes and the electrons transport the photocurrent and the solar cell starts to produce electricity.

This has been well-known for a long time. However, the remarkable waveform then appeared in Qingzhen Bian’s experiment.

Olle InganäsOlle Inganäs, Professor emeritus Photo credit THOR BALKHED“The only conceivable explanation is that coherence arises between the excited system and the separated charges. We asked the quantum chemists to look into this and the results we obtain in repeated experiments agree well with their calculations”, says Olle Inganäs.

Coherence arises

In the quantum scale, atoms vibrate, and they vibrate faster when they are heated. It is these vibrations that interact with each other in some way and with the excited system of electrons: the phases of the waves follow each other and a state of coherence arises.
“The coherence helps to create the charges that give the photocurrent, which takes place at room temperature. But we don’t know why or how yet”, says Olle Inganäs.

The same quantum coherence is found in the biological world.
“An intense debate is ongoing among biophysics researchers whether systems that use photosynthesis have learnt to exploit coherence or not. I find it unlikely that millions of years of evolution have not resulted in the natural world exploiting the phenomenon”, says Olle Inganäs.

“If we understood better how the charge carriers are formed and how the process is controlled, we should be able to use it to increase the efficiency of organic solar cells. The vibrations depend on the structure of the molecule, and if we can design molecules that contribute to increasing the photocurrent, we can also use the phenomenon to our advantage”, he says.

Principal source of funds for the research has been the Knut and Alice Wallenberg Foundation.

Vibronic coherence contributes to photocurrent generation in organic semiconductor heterojunction diodes, Qingzhen Bian, Fei Ma, Shula Chen, Qi Wei, Xiaojun Su, Irina A. Buyanova, Weimin M. Chen, Carlito S. Ponseca Jr, Mathieu Linares, Khadga J. Karki, Arkady Yartsev & Olle Inganäs. Nature Communications 2020. DOI 10.1038/s41467-020-14476-w

Qingzhen Bian will defend his doctoral thesis April 2 2020, Campus Valla, Linköping University.
Excitonic and charge carrier transport in organic materials and device applications, Qingzhen Bian, Biomolekylär och organisk elektronik, Institutionen för fysik, kemi och biologi, 2020.

Quingzhen Bian, IFM, solar cellQingzhen Bian Photo credit Magnus Johansson


Contact

News from Biomolecular and organic elecronics

Researcher in lab coat holds blue solar cell with tweezers.

How non-toxic and efficient solar cells can be produced

Large-scale production of organic solar cells with high efficiency and minimal environmental impact. This can now be made possible through a new design principle developed at Linköping University.

Portrait Feng Gao.

Creating the flexible X-ray technology of the future

Professor Feng Gao has been granted SEK 31 million from the Knut and Alice Wallenberg Foundation over five years to develop a new type of X-ray technology. The goal is a flexible material that can improve X-ray detector image quality.

Two pipettes poring liquids on to a disk.

Research for a sustainable future in ten new projects

Photosynthetic materials, two-dimensional noble metals and sustainable semiconductors are some of the projects at LiU that have been granted funding from the research programme Wallenberg initiative materials science for sustainability – WISE.

Latest news from LiU

Server room and data on black background.

Machine Psychology – a bridge to general AI

AI that is as intelligent as humans may become possible thanks to psychological learning models, combined with certain types of AI. This is the conclusion of Robert Johansson, who in his dissertation has developed the concept of Machine Psychology.

Research for a sustainable future awarded almost SEK 20 million grant

An unexpected collaboration between materials science and behavioural science. The development of better and more useful services to tackle climate change. Two projects at LiU are to receive support from the Marianne and Marcus Wallenberg Foundation.

Innovative idea for more effective cancer treatments rewarded

Lisa Menacher has been awarded the 2024 Christer Gilén Scholarship in statistics and machine learning for her master’s thesis. She utilised machine learning in an effort to make the selection of cancer treatments more effective.