19 January 2024

With coffee boasting an estimated global consumption of 2.25 billion cups daily, it stands as the most commonly used behaviorally active substance worldwide. Despite its widespread use, the clinical impact of coffee on cardiovascular health remains unclear.

People drinking coffee. The researchers will investigate how drinking coffee affects cardiovascular health in different people given each individual genetic predisposition.

In an exciting and forward-thinking initiative, the Wallenberg Centre for Molecular Medicine (WCMM) at Linköping University has allocated significant funds to explore the intricate relationship between genetics, lifestyle, and cardiovascular health.

The project, titled "Understanding How Genome and Lifestyle Shape Cardiovascular Health," delves into the nexus of coffee consumption and its impact on individual genetic predispositions.

Leading the charge are clinical fellows Fredrik Iredahl and David Kylhammar, alongside WCMM Fellow Claudio Cantù. Their ambitious project seeks to decode the mysteries of how genome and lifestyle choices, particularly the globally prevalent habit of coffee consumption, shape cardiovascular health. Leveraging data from the Swedish CardioPulmonary bioImage Study (SCAPIS) initiative, the team will analyze genetic information and phenotypic details from over 30,000 participants aged 50-64.

A global habit under the microscope

Coffee in a cup with a heart on.The researchers will tackle this challenge by merging key competences in human metabolic disease (WCMM Clinical Fellow Fredrik Iredahl), in cardiac physiopathological imaging (WCMM Clinical Fellow David Kylhammar) and in genomics (WCMM Fellow Claudio Cantù). With coffee boasting an estimated global consumption of 2.25 billion cups daily, it stands as the most commonly used behaviorally active substance worldwide. Despite its widespread use, the clinical impact of coffee on cardiovascular health remains unclear. The project aims to illuminate this ambiguity by exploring the link between coffee consumption and cardiovascular disease, considering genetic variations that may influence individual responses to caffeine.

The researchers plan to conduct a comprehensive analysis using data from SCAPIS, examining cardiovascular and pulmonary status, blood parameters, thorax imaging, physical ability, and other biometric data from 30,000 individuals. Their meticulous approach aims to uncover correlations between lifestyle choices, such as coffee consumption, genetic variations, and heart remodeling. The diverse dataset includes genotypic information and lifestyle details.

To unveil hidden correlations

Anticipated outcomes of the project include unveiling hidden statistical correlations between coffee consumption, pathophysiological characteristics, and genetic constitution. The ultimate goal is to generate predictions of cardiovascular disease (CVD) risk based on known genetic, phenotypic, and lifestyle variables. Beyond immediate impact, the researchers envision laying the groundwork for future studies, providing an analytical template for exploring other multi-dimensional datasets in the realm of human pathophysiology.

Contact

Latest news from LiU

young man taking a break from running.

Physical fitness in adolescence linked to less atherosclerosis later

Men who were physically fit when they were young had a lower risk of atherosclerosis almost 40 years later. These findings suggest that atherosclerosis is one of the mechanisms behind the link between physical fitness and cardiovascular disease.

Two female student, dissasembling an Ikea product.

Students disassemble Ikea products

This is part of a research project in which LiU students get to collaborate with the Swedish furniture giant. The students document possibility of repairing, replacing and reusing.

A smiling man in a blue jacket and a lightblue shirt

Innovative semiconductor research from LiU to Silicon Valley

LiU alumnus and doctoral student Ivan Martinovic swapped Swedish winter for a warmer climate and headed for Silicon Valley.  He represents the LEAD company Polar Light Technologies in Berkeley SkyDeck’s sought-after accelerator programme.