19 January 2024

With coffee boasting an estimated global consumption of 2.25 billion cups daily, it stands as the most commonly used behaviorally active substance worldwide. Despite its widespread use, the clinical impact of coffee on cardiovascular health remains unclear.

People drinking coffee.
The researchers will investigate how drinking coffee affects cardiovascular health in different people given each individual genetic predisposition.

In an exciting and forward-thinking initiative, the Wallenberg Centre for Molecular Medicine (WCMM) at Linköping University has allocated significant funds to explore the intricate relationship between genetics, lifestyle, and cardiovascular health.

The project, titled "Understanding How Genome and Lifestyle Shape Cardiovascular Health," delves into the nexus of coffee consumption and its impact on individual genetic predispositions.

Leading the charge are clinical fellows Fredrik Iredahl and David Kylhammar, alongside WCMM Fellow Claudio Cantù. Their ambitious project seeks to decode the mysteries of how genome and lifestyle choices, particularly the globally prevalent habit of coffee consumption, shape cardiovascular health. Leveraging data from the Swedish CardioPulmonary bioImage Study (SCAPIS) initiative, the team will analyze genetic information and phenotypic details from over 30,000 participants aged 50-64.

A global habit under the microscope

Coffee in a cup with a heart on.The researchers will tackle this challenge by merging key competences in human metabolic disease (WCMM Clinical Fellow Fredrik Iredahl), in cardiac physiopathological imaging (WCMM Clinical Fellow David Kylhammar) and in genomics (WCMM Fellow Claudio Cantù). With coffee boasting an estimated global consumption of 2.25 billion cups daily, it stands as the most commonly used behaviorally active substance worldwide. Despite its widespread use, the clinical impact of coffee on cardiovascular health remains unclear. The project aims to illuminate this ambiguity by exploring the link between coffee consumption and cardiovascular disease, considering genetic variations that may influence individual responses to caffeine.

The researchers plan to conduct a comprehensive analysis using data from SCAPIS, examining cardiovascular and pulmonary status, blood parameters, thorax imaging, physical ability, and other biometric data from 30,000 individuals. Their meticulous approach aims to uncover correlations between lifestyle choices, such as coffee consumption, genetic variations, and heart remodeling. The diverse dataset includes genotypic information and lifestyle details.

To unveil hidden correlations

Anticipated outcomes of the project include unveiling hidden statistical correlations between coffee consumption, pathophysiological characteristics, and genetic constitution. The ultimate goal is to generate predictions of cardiovascular disease (CVD) risk based on known genetic, phenotypic, and lifestyle variables. Beyond immediate impact, the researchers envision laying the groundwork for future studies, providing an analytical template for exploring other multi-dimensional datasets in the realm of human pathophysiology.

Contact

Latest news from LiU

Two men signing an agreement.

LiU and Siemens Energy enter into strategic partnership

In order to find long-term solutions to future challenges in the energy field, Linköping University and Siemens Energy AB sign a strategic partnership agreement.

Two persons in a fabric.

Alumni driving electrification in Kenya

Almost seven years ago, they left LiU to start a company in Nairobi. Today, Roam produces several hundred self-built electric motorcycles a month. And the journey has only just begun.

The entrepreneur who shaped his idea at LiU

Niclas Söör really got the most out of his student life at LiU. That’s what shaped his career. It was here that he got the idea for Dospace, a kind of office hotel with close to 1,400 members at eleven locations in Sweden.