08 December 2025

Designing and building an autonomously flying aircraft to document weather conditions in an Arctic climate. The master’s students in Aeronautical Engineering received a substantial boost in applying their theoretical knowledge.

Men in a mechanical workshop, construction lab. Photographer: Ulrik Svedin

“It has been great fun working in a group and solving problems together. Many of us come from other universities in Europe and are used to a lot of theory. But in this course, it’s much more about application. Everyone contributes with their expertise. I really like that” says Bálint Juhos.

Man in a mechanical workshop, construction lab.Photographer: Ulrik Svedin
Bálint Juhos liked the practical collaboration in the construction process.

The assignment placed high demands on the students’ background knowledge. They were divided into different groups, each approaching the task in slightly different ways. The group we followed began by designing the aircraft on a computer so that it would withstand harsh Arctic conditions.The group started by designing the aircraft to withstand harsh Arctic conditions.

Time and budget

“But we have to stick to the time frame and budget. We built a somewhat simpler aircraft with long battery life. We also envisioned sensors that could measure reflection from ice. Wet ice that is melting reflects sunlight more than really cold ice. In that way, the reflection of sunlight can become a measure of ice melt” says David Lochner.

Did you encounter any particular challenges?
“Oh, many. But one important lesson was that it’s one thing to design an aircraft, to draw it in 3D on the computer, and quite another to build it. Rather late in the process, we discovered that the tail was far too small, for example” he replies.

Men in a mechanical workshop, construction lab.Photographer: Ulrik Svedin
There is a lot of things that need to work: The electronics, the engine, the propellers, the control system, the batteries and the entire flight capability. In addition, the aircraft must handle landings. The suspension became a problem, which they solved in an unexpected way.

Too stiff

“When you land, everything in the aircraft moves, including cables and connections. We needed something that could do the job, but the springs we ordered were too stiff” explains Andrea Vitialie.

We found an ordinary
desk lamp

Frustrated, they went back into the workshop lab to see what was available.

“We found an ordinary desk lamp. It had the springs we needed!”

David Lundström, Associate Professor, leads the course together with the PhD students Stefan Riethausen and Cezar-Victor Boruga.

“The students have worked independently and done a great job. They’ve worked with laser cutting, 3D printing and electronics. More theoretically, they also solved the task with the arctic climate. And then we went out together and flew the aircraft, which often feels like a big reward for the students” says David Lundström.

Contact

More about the programme

Organisation

Latest news from LiU

A man is standing outdoors on a bridge, speaking to several people.

Tomorrow’s urban planners solve real challenges

Students on master’s programme in Strategic Urban and Regional Planning do more than study how cities develop. They step straight into reality. By working on real cases in Norrköping, their ideas could help shape the city’s future.

EU-flagga

Roadmap to strengthen LiU:s role in Europe

LiU is increasing international presence by launching the Roadmap to Europe initiative. The aim is to deepen the university’s collaboration within Europe so as to strengthen education, research and collaboration with various stakeholders.

Porträtt av Fredrik Heintz som sitter i en trappa

National initiative to protect AI systems from cyberattacks

LiU will host a new national centre aimed at developing resilient AI systems. The funding of SEK 60 million comes from the Swedish Foundation for Strategic Research and its director will be LiU Professor Fredrik Heintz.