Organisk nanoelektronik

Organisk nanoelektronik

Bottom-up elektronik: studera struktur/egenskapsförhållanden i organiska halvledare

Forskningsledare: Simone Fabiano

Legofigurer förklarar processenFoto: Thor Balkhed

Medan konventionell elektronik huvudsakligen använder top-down metoder för miniatyrisering, öppnar införandet av molekylära material för en bottom-up-tillverkning. 

Den kemiska mångsidigheten hos molekylära system tillåter införlivandet av både de elektriska och kemiska funktionaliteter (självorganisering) som är nödvändiga för bottom-up-elektronik – i ett enda material.

Forskningen i Organisk nanoelektronik-gruppen på LiU fokuserar på optoelektroniska och transportegenskaper hos dessa organiska halvledare på nanoskalan.

Egenskaper vid en sådan liten skala ger ofta upphov till oväntade beteenden. Därför strävar vi efter att experimentellt undersöka grundläggande företeelser av tekniskt och vetenskapligt intresse.

Detta ger många möjligheter att skapa komponenter och optimera deras funktionalitet för tillämpningar inom transistorer, elektrokemiska anordningar, icke-flyktiga ferroelektriska minnen och solceller. 

 

Forskningsprojekt inom Organisk nanoelektronik

  • Dopning av halvledande polymerer
  • Förhållandet mellan strukturer och egenskaper
  • Organiska ferroelektriska material
 

Publikationer

2024

Simiao Yu, Hanyan Wu, Vincent Lemaur, Christina J. Kousseff, David Beljonne, Simone Fabiano, Christian B. Nielsen (2024) Cation-Dependent Mixed Ionic-Electronic Transport in a Perylenediimide Small-Molecule Semiconductor Angewandte Chemie International Edition, Vol. 63, Artikel e202410626 (Artikel i tidskrift) Vidare till DOI
Haoran Tang, Yuanying Liang, Chiyuan Yang, Xi Luo, Jiangkai Yu, Kai Zhang, Simone Fabiano, Fei Huang (2024) Polyethylene glycol-decorated n-type conducting polymers with improved ion accessibility for high-performance organic electrochemical transistors Materials Horizons (Artikel i tidskrift) Vidare till DOI
Tiefeng Liu, Gulzada Beket, Qifan Li, Qilun Zhang, Sang Young Jeong, Chi-Yuan Yang, Jun-Da Huang, Yuxuan Li, Marc-Antoine Stoeckel, Miao Xiong, Tom van der Pol, Jonas Bergqvist, Han Young Woo, Feng Gao, Mats Fahlman, Thomas Osterberg, Simone Fabiano (2024) A Polymeric Two-in-One Electron Transport Layer and Transparent Electrode for Efficient Indoor All-Organic Solar Cells Advanced Science (Artikel i tidskrift) Vidare till DOI
Wenlong Jin, Chiyuan Yang, Riccardo Pau, Qingqing Wang, Eelco K. Tekelenburg, Hanyan Wu, Ziang Wu, Sang Young Jeong, Federico Pitzalis, Tiefeng Liu, Qiao He, Qifan Li, Jun-Da Huang, Renee Kroon, Martin Heeney, Han Young Woo, Andrea Mura, Alessandro Motta, Antonio Facchetti, Mats Fahlman, Maria Antonietta Loi, Simone Fabiano (2024) Photocatalytic doping of organic semiconductors Nature (Artikel i tidskrift) Vidare till DOI
Dace Gao, Simone Fabiano (2024) Conductive hydrogels put electrons in charge: Semiconductor hydrogels enable active bioelectronics Science, Vol. 384, s. 509-510 (Artikel i tidskrift) Vidare till DOI

Forskningsledare

Medarbetare

Nyheter

Glasskiva med droppe belyst underifrån.

Nästa generations hållbara elektronik dopas med luft

Forskare vid LiU har utvecklat en ny metod där organiska halvledare kan bli mer ledande med hjälp av luft som störämne. Enligt forskarna är det ett stort steg mot framtidens billiga och hållbara organiska halvledare.

Person i labbrock och handskar häller en blå vätska på en glasyta.

Miljövänligare metod för att skapa organiska halvledare

Forskare vid LiU har utvecklat ett nytt miljövänligare sätt att skapa ledande bläck för användning i organisk elektronik som solceller och konstgjorda nervceller. Fynden banar väg för framtidens hållbara teknologi.

Simone Fabiano

Han ska utveckla mjuk elektronik som liknar hjärnan

Simone Fabiano, biträdande professor vid LOE, har beviljats 23 miljoner kronor från Europeiska forskningsrådet för att utveckla en ny typ av mjuk elektronik som hämtar inspiration från hjärnan.

LOE