05 februari 2019

En transistor i organisk elektronik som både kan lära sig och har såväl kort- som långtidsminne har utvecklats av forskare vid Linköping universitet. Tekniken innebär ett stort steg mot att efterlikna hur den mänskliga hjärnan fungerar.

Simone Fabiano och Jennifer Gerasimov Fotograf: Thor Balkhed
Simone Fabiano och Jennifer Gerasimov har tagit fram en lärande transistor som efterliknar hur synapser skickar signaler mellan nervceller.
Hittills har våra hjärnor varit unika i att kunna skapa kopplingar där inga kopplingar tidigare fanns. I en vetenskaplig artikel i Advanced Science visar nu forskare vid Linköpings universitet en transistor som kan skapa en helt ny koppling mellan in- och utsignal. Transistorn har de också bygg in i en elektronisk krets som lär sig att koppla samman ett visst stimuli med en utsignal på samma vis som en hund lär sig att skrammel med matskålen betyder mat och börjar dregla.

Förändrar sig själv

En vanlig transistor fungerar som en ventil som förstärker eller förminskar utsignalen, beroende på hur insignalen ser ut. I den organiska elektrokemiska transistor som forskarna har tagit fram formas själva kanalen i transistorn av en elektropolymeriserad ledande polymer. Kanalen kan formas, den kan växa eller krympa, och även tas bort helt under gång. Den kan också tränas att reagera på ett visst stimuli, en viss insignal, så att transistorkanalen leder allt bättre och utsignalen blir allt större.

– Det är första gången någon har kunnat visa förändringsbarhet i en elektronisk komponent i realtid i ett system som ska efterlikna hur hjärnan fungerar, säger Simone Fabiano, forskningsledare inom organisk nanoelektronik vid Laboratoriet för organisk elektronik, Campus Norrköping.

Efterliknar hjärnceller

Förändringarna sker genom att öka polymeriseringen av materialet i transistorkanalen, fler och fler polymerkedjor skapas som leder signalen, eller så överoxideras materialet (en hög spänning läggs på) så att kanalen blockeras. Gradvisa förändringar av ledningsförmågan kan också göras genom att förändra dopningen av materialet.

– Vi har visat att vi kan skapa både kortvariga och permanenta förändringar i hur transistorn processar information, något som är nödvändigt om vi vill efterlikna det sätt som hjärnceller kommunicerar med varandra, säger Jennifer Gerasimov, postdoktor inom organisk nanoelektronik och en av artikelns författare.

Genom att ändra ingångssignalen kan styrkan i transistorns reaktion moduleras inom ett stort spann och kopplingar kan skapas där inga kopplingar tidigare fanns. Det ger ett beteende som är jämförbart med synapsernas eller med kommunikationen mellan två hjärnceller.

Hårdvara för maskininlärning

Detta innebär även ett stort steg framåt inom maskininlärning med organisk elektronik. Inom maskininlärning används i dag mjukvarubaserade neurala nätverk för det som också kallas djupinlärning. Mjukvaran ser till att signalerna skickas mellan ett stort antal noder för att simulera en enda synaps, något som kräver stor beräkningskraft och därmed också Jennifer Gerasimov och Simone FabianoJennifer Gerasimov och Simone Fabiano Foto Thor Balkhedenergi.

– Vi har tagit fram en hårdvara som gör samma sak med en enda elektronisk komponent, konstaterar Jennifer Gerasimov.

– Vår organiska elektrokemiska transistor kan därför utföra tusentals vanliga transistorers jobb med en energiåtgång som närmar sig den energi som går åt när en mänsklig hjärna skickar signaler mellan två celler, intygar Simone Fabiano.

Nyframtagen monomer

För transistorkanalen används inte den i särklass vanligaste polymeren inom den organiska elektroniken, PEDOT. Istället används en polymer av en nyligen utvecklad monomer, ETE-S, framtagen av Roger Gabrielsson, även han verksam vid Laboratoriet för organisk elektronik och medförfattare till artikeln.

ETE-S har flera unika egenskaper som gör den perfekt för den här applikationen. Den formar lagom långa polymerkedjor, den är vattenlöslig som monomer, men inte som polymer, och den producerar polymerer med en lämplig nivå av dopning. Polymeren PETE-S produceras negativt laddad för att balansera de positiva laddningsbärarna (den är p-dopad).

Forskningen har finansierats med medel från bland andra Knut och Alice Wallenbergs stiftelse, Vinnova, Vetenskapsrådet och Stiftelsen Strategisk Forskning.

An Evolvable Organic Electrochemical Transistor for Neuromorphic Applications, Jennifer Y Gerasimov, Roger Gabrielsson, Robert Forchheimer, Eleni Stavrinidou, Daniel T Simon, Magnus Berggren and Simone Fabiano, Linköping University, Advanced Science 2018. DOI 10.1002/advs.201801339

Kontakt

Fler nyheter från LOE

En man i labbrock häller vätska i ett rör.

Elektroder som skapas med ljus

Synligt ljus kan användas för att skapa elektroder av ledande plaster helt utan farliga kemikalier. Det har forskare vid LiU visat. Elektroderna kan skapas på olika typer av underlag vilket öppnar för en ny typ av elektronik.

En mini-modell av en hjärna gjord av gelé.

Stora donationer till nydanande behandling mot parkinson

Stiftelsen Promobilia har donerat 30 miljoner kronor till LiU för ett forskningsprojekt där organisk elektronik ska användas för att behandla Parkinsons sjukdom. Även Stiftelsen för Parkinsonforskning har donerat 5 miljoner kronor till ändamålet.

Forskare i labb.

Två nya masterprogram i världsledande materialvetenskap

Linköpings universitet är bland de främsta i världen på materialvetenskap. Hösten 2026 startar två nya masterprogram inom området. En mycket god arbetsmarknad väntar studenterna, både i industrin och akademin.

Laboratoriet för organisk elektronik

Senaste nytt från LiU

En man står utomhus på en bro och talar inför flera personer.

Framtidens samhällsplanerare löser riktiga problem

På masterprogrammet Strategisk samhällsplanering får studenterna inte bara läsa om hur städer utvecklas. De får vara med och påverka på riktigt. Genom att jobba med verkliga fall på plats i Norrköping kan deras idéer bli verklighet.

EU-flagga

Färdplan stärker LiU:s roll i Europa

LiU tar ett steg mot ökad internationell närvaro genom att lansera initiativet Färdplan Europa. Syftet är att fördjupa universitetets samarbeten inom Europa och på så vis stärka utbildning, forskning och samverkan med olika samhällsaktörer.

Porträtt av Fredrik Heintz som sitter i en trappa

AI-system ska skyddas mot cyberattacker i nationell satsning

LiU blir värd för ett nytt nationellt centrum som ska utveckla motståndskraftiga AI-system. Finansieringen på 60 miljoner kronor kommer från Stiftelsen för strategisk forskning och föreståndare blir LiU-professorn Fredrik Heintz.