Hämtat ur Mattias Tigers avhandling:
Framtidens cyberfysiska autonoma system kommer att behöva ta hänsyn till människor och djur. Det är därför viktigt att hitta en balans mellan säkert beteende och förmågan att genomföra uppdrag. Den här avhandlingen presenterar metoder och algoritmer som möjliggör en sådan avvägning på ett systematiskt sätt. Målet är att resultatet ska leda till en framtid där robotsystem kan integreras i samhället på ett pålitligt och säkert vis.
Människor har i alla tider drömt om autonoma system som utför uppgifter vi själva inte vill eller kan utföra. Drömmarna idag handlar i stor utsträckning om självkörande fordon, paketlevererande flygfarkoster, gatusopparrobotar eller robotar som utför hushållsnära tjänster. Autonoma system så som dessa förväntas av forskare och beslutsfattare att i närtid bli en allt vanligare syn i samhällets publika och privata miljöer. Det kan handla om exempelvis hem, gemensamma utomhusmiljöer, kontor eller industriområden. Samtidigt är sådana miljöer problematiska då de är föränderliga, ofullständigt kända i förväg och att de befolkas av människor utan särskild träning att handskas med autonoma system. Stora utmaningar finns kvar att lösa innan en effektiv användning och integration av autonoma system kan ske i dessa miljöer. Det är stor skillnad på dessa vardagliga miljöer och de kontrollerade miljöerna i laboratorium eller avgränsade fabriks‐ eller lagerlokaler där autonoma system återfinns idag. Denna avhandling undersöker hur metoder från artificiell intelligens, så som från exempelvis maskininlärning, kan användas för att möjliggöra en säker och användbar användning av autonoma system i vardagliga miljöer.
Robust autonomi utanför kontrollerade miljöer ställer höga krav på sådana system vad gäller pålitlighet, säkerhet och användbarhet. Det krävs i sådana miljöer mer än uppfyllandet av tuffa kravspecifikationer genom traditionella tester under ett systems konstruktion. Mycket om miljön går inte att veta i förväg. Det autonoma systemet behöver därför på egen hand kunna resonera effektivt kring osäkerhet, okända fenomen och om förändring i världen ‐ bortom de enskilda exempel som dess kravställare och utvecklare tänkte på då systemet byggdes.
I denna avhandling studeras hur man kan realisera säkra och robusta autonoma system i miljöer som är dynamiska, med varierande osäkerhet och där man inte kan anta en sluten värld – med fokus på agenter i rörelse. Avhandlingens huvudsakliga bidrag ligger inom och i kombination av: rörelseplanering, rörelse‐mönsterigenkänning, formell verifiering av rörelsebeteende under körning och kontinuerlig inlärning för att hantera en föränderlig värld.
Konkret presenterar avhandlingen nya sätt att effektivt realisera säker rörelseplanering och säker exekvering av rörelseplaner i geometriskt komplexa och dynamiska miljöer. Detta genom att kombinera optimal styrning, AI‐planering, robust maskininlärning och automatisk slutsatsdragning över osäkra signaler. Experiment har utförts på riktiga och simulerade DJI M100 (quadcopter), men metoden är generell och beror inte på om roboten flyger, åker eller går. Avhandlingen går även in på hur man genom kombination av probabilistisk maskininlärning och formell runtime‐verifiering kan göra autonoma system säkrare och robustare, exempelvis genom att identifiera anomalier så som hårdvaruförsämring, för stark vind, illasinnat övertagande och oförutsägbarhet av eget och andras beteenden. Dessa metoder möjliggör övervakning av att systemet förblir konsekvent (och säkert), mellan exempelvis perception, förväntan, beslut, planering och handling. Målet med avhandlingen är att bidra till en säkrare och pålitligare användning av autonoma system i vår värld, genom design av säkerhetsmedvetna autonoma system.
This work was partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation, and by grants from the National Graduate School in Computer Science (CUGS), the Swedish Foundation for Strategic Research (SSF) project CUAS, the Swedish Research Council (VR) Linnaeus Center CADICS, Sweden, the Center for Industrial Information Technology CENIIT, the Excellence Center at Linkping‐Lund for Information Technology (ELLIIT), the TAILOR Project funded by EU Horizon 2020 research and innovation programme GA No 952215, and Knut and Alice Wallenberg Foundation (KAW 2019.0350).