Att utveckla AI för tillämpningar inom vården, exempelvis inom medicinsk bildanalys, kan spara tid i sjukvården. Men det finns flera utmaningar. Datadriven AI, det vill säga storskaliga maskininlärningsmodeller, behöver en stor mängd medicinsk data att träna på. För att exempelvis träna modeller att automatiskt analysera magnetkamerabilder på hjärntumörpatienter, behövs väldigt många sådana bilder. Men att dela medicinska bilder kompliceras av etik, anonymisering och dataskyddslagstiftning.
Att kombinera medicinsk information från flera sjukhus ger större mängd medicinska data. Genom att varje sjukhus var för sig tränar en AI-modell lokalt behöver inte den känsliga informationen skickas utanför sjukhuset. I ett europeiskt forskningsprojekt kombinerar forskare i realtid lokalt tränade modeller till en gemensam så kallad global modell på en server i en annan stad. På så sätt behöver de inte skicka den medicinska data varje lokal modell är tränad på. Tekniken kallas federerad inlärning. Forskarna har nu genomfört federerad inlärning mellan Linköpings universitet och Strålbehandlingen vid Skånes universitetssjukhus i Lund.
Först i Sverige
– Vi tror att vi är bland de första i Sverige med att göra federerad inlärning med medicinska bilder. Vi kommer snart att lägga till flera städer, närmast på tur är Umeå, säger Anders Eklund, biträdande professor vid Institutionen för medicinsk teknik (IMT) och Institutionen för datavetenskap (IDA).
En utmaning kvar att lösa är att bilderna kan skilja sig mellan sjukhusen på grund av olika utrustning och kameror. Sjukhusen kan också ha olika kliniska riktlinjer för hur onkologer, det vill säga cancerläkare, ska rita tumörer och hantera kringliggande organ, så kallade riskorgan. Anders Eklund är förhoppningsfull att de kommer ta fram en lösning som kompenserar för det. I projektet har de därför gjort simuleringar där de använt sig av ett öppet dataset, det vill säga en öppen samling av data som kallas BraTS. BraTS innefattar bilder och utritade tumörer för hjärntumörpatienter från mer än tjugo olika sjukhus, och har skapats just för att utveckla liknande modeller.
– Om exempelvis ett sjukhus skulle ha tio eller tjugo procent mindre storlek på tumören i sina bilder som påverkar federationen negativt, så kan vi förhoppningsvis utveckla metoder så att det fungerar ändå.
Fler tillämpningsområden
Projektet involverar även företag och universitet i Nederländerna, Belgien och Turkiet. I Nederländerna utvecklar forskarna exempelvis liknande modeller för leverbilder.
– Med leverbilderna används samma teknik men med annorlunda tillämpning. Det är vitsen, att lära av varandra och använda samma teknik på olika sätt.
Anders Eklund nämner också att andra möjliga tillämpningsområden med federerad inlärningsteknik skulle kunna vara genetik eller text i medicinska journaler, det vill säga språkmodeller i vården. Företag som har väldigt mycket data i olika städer och som inte vill lägga allt på samma ställe skulle också kunna använda sig av tekniken. Likaså företag som vill vara med i forskningsprojekt och som inte vill skicka sina data.
– Tekniken kan användas till all typ av information som är känslig på olika sätt. Användningen kommer mer och mer, annars skulle företagen inte vara med och satsa på projektet.