13 november 2024

Amanda Olmin vid Institutionen för datavetenskap (IDA) försvarade den 25 oktober sin avhandling som fokuserar på probabilistiska maskininlärningsmodeller. Hon hoppas att avhandlingen kan bidra till en säkrare användning av sådana modeller i samhället. Närmast arrangerar hon en workshop i maskininlärning för kvinnor.

Titel med diffust landskap i bakgrunden

Gratulerar till doktorsexamen! Vad hade du för bakgrund när du började din forskarutbildning?

– Tack. Innan jag påbörjade mina doktorandstudier, genomförde jag en civilingenjörsutbildning på Chalmers, med inriktning Bioteknik. I min master fokuserade jag på analys och modellering av komplexa system, vilket innebar ett skifte från våtlabbet till datorlabbet.

Hur är det att vara doktorand vid IDA?
– Doktorandstudierna har varit väldigt givande i stort, även om det också har varit en del upp- och nedgångar. Söker du en trevlig arbetsmiljö och stöttande kollegor, skulle jag definitivt rekommendera att doktorera på IDA.

Du har precis disputerat. Vad vill du göra härnäst?
– Jag kommer att jobba kvar på universitetet till årsskiftet, bland annat så är jag med och organiserar en workshop som fokuserar på kvinnor i maskininlärning. Vad jag ska göra efter det har jag ännu inte bestämt.

Sammanfattning av avhandlingen

Maskininlärningsmodeller används för att göra prediktioner, så som att förutsäga vädret eller rekommendera personliga favoriter i streamingtjänster. Med syfte att prediktera verkliga företeelser, påverkas maskininlärningsmodeller av den inneboende osäkerhet som är del av dessa företeelser. Dessutom är maskininlärningsmodeller datadrivna, vilket innebär att en sådan modell förvärvar kunskap genom att observera data, som kallas träningsdata, vilken ligger till grund för hur väl modellen presterar på sin avsedda uppgift. Begränsad eller brusig träningsdata är båda potentiella källor till osäkerhet i modellens prediktioner.

I sin avhandling, fokuserar Amanda Olmin på probabilistiska maskininlärningsmodeller. Dessa modeller är särskilt lämpade för att ta hänsyn till osäkerhet i prediktioner, som uppstår till följd av ovan nämnda aspekter. I synnerhet i säkerhetskritiska sammanhang är denna egenskap viktig, eftersom prediktiv osäkerhet kan spela en central roll i beslutsfattande processer, som till exempel när en mänsklig förare bör överta kontrollen av ett självkörande fordon. Avhandlingen lägger också betydande fokus på så kallad etikettosäkerhet i träningsdata. Genom ökad förståelse för hur etikettosäkerhet, liksom andra faktorer, påverkar egenskaper hos probabilistiska maskininlärningsmodeller hoppas avhandlingen bidra till en säkrare användning av sådana modeller i samhället.

Läs avhandlingen: Perspectives on Predictive and Annotation Uncertainty in Probabilistic Machine Learning

Svensk titel: Perspektiv på prediktiv- och etikettosäkerhet i probabilistisk maskininlärning

Mer om ämnet och forskarutbildningen vid IDA

Organisation

Senaste nytt från LiU

Manlig person på stadsgata.

Förmånsbilar leder till fler och större fordon

När bensinpriset skjuter i höjden så är det medelinkomsttagare som först ändrar beteende. Det visar en landsomfattande studie vid LiU och VTI. Forskning visar även att skatterabatten på förmånsbilar leder till ökat bilinnehav samt större bilar.

Forskare diskuterar i labbet.

LiU Composite Lab öppnar dörrarna för avancerad materialforskning

Här ska forskning på nya material inom till exempel kolfiber, polymerer och komposit pågå i samverkan med näringslivet, forskningsinstitut, andra lärosäten och studenter. LiU Composite Lab är ett nyetablerat laboratorium, våren 2025.

Kvinnlig forskare och buss.

Forskning ska spara pengar och miljö i kollektivtrafiken

Är bussbiljetten för dyr? Det kan bero på att de offentliga upphandlingarna inom kollektivtrafiken ställer allt högre krav på entreprenörerna. I ett fyraårigt projekt ska LiU-forskare studera hur upphandlingen kan bli mer cirkulär.