15 mars 2024

Material som är extremt tunna, endast några få atomer i tvärsnitt, får ovanliga egenskaper som gör dem lämpliga för bland annat energilagring, katalys och vattenrening. Nu har forskare vid Linköpings universitet utvecklat en metod där hundratals nya 2D-material kan skapas. Studien är publicerad i tidskriften Science.

Person (Jie Zhou) pekar på en datorskärm.
Jie Zhou, biträdande universitetslektor vid IFM, visar bilderna från elektronmikroskoperingen som bekräftar att forskarnas teoretiska modell fungerar i verkligheten. Fotograf: Olov Planthaber

Sedan upptäckten av grafen har forskningsfältet inom extremt tunna material, så kallade 2D-material, ökat lavinartat. Anledningen är att 2D-material har en stor yta i förhållande till sin volym eller vikt. Detta kan ge upphov till en rad fysikaliska fenomen och även särskilda egenskaper som god ledningsförmåga, hög hållfasthet eller värmetålighet, vilket gör 2D-material intressanta både inom grundläggande forskning och tillämpad teknik.

– I en film som endast är någon millimeter tunn kan det finnas flera miljoner lager av materialet. Mellan lagren kan det ske en massa kemiska reaktioner och tack vare det kan 2D-material användas för energilagring eller för att generera bränsle till exempel, säger Johanna Rosén, professor i materialfysik vid Linköpings universitet.

Trestegsraket

Den största familjen 2D-material kallas MXener. För att skapa MXener utgår man från ett tredimensionellt grundmaterial som kallas för MAX-fas. Det består av tre olika ämnen: M är en övergångsmetall, A är ett grundämne, och X är kol eller kväve. Genom att ta bort A-delen med syror (exfoliering) skapas ett tvådimensionellt material. Fram till nu har det varit den enda materialfamiljen som skapats på detta sätt.

Person (Johanna Rosén) i ett labb.
Johanna Rosén, professor i materialfysik vid Institutionen för fysik, kemi och biologi (IFM).
Fotograf: Anna Nilsen

Linköpingsforskarna har tagit fram en teoretisk metod för att förutsäga andra tredimensionella grundmaterial som kan vara lämpliga att omvandla till 2D-material. De har dessutom bevisat att den teoretiska modellen stämmer i verkligheten.

För att lyckas använde sig forskarna av en trestegsraket. I första steget utvecklades en teoretisk modell för att förutsäga vilka grundmaterial som skulle vara lämpliga. Med hjälp av storskaliga beräkningar vid Nationellt Superdatorcentrum kunde forskarna identifiera 119 lovande grundmaterial från en databas och ett urval bestående av 66 643 material.

Från teori till labb

Nästa steg var att försöka skapa materialet i labb.

– Av 119 möjliga material utvärderade vi vilka som hade den kemiska stabiliteten som krävs och vilket material som var den bästa kandidaten. Först var vi tvungna att syntetisera 3D-materialet vilket var utmanande i sig. Till sist fick vi till ett prov av hög kvalité där vi kunde etsa bort specifika atomlager med hjälp av flourvätesyra, säger Jie Zhou, biträdande universitetslektor vid Institutionen för fysik, kemi och biologi.

Det forskarna gjorde var att ta bort yttrium (Y) från grundmaterialet YRu2Si2, vilket resulterade i tvådimensionellt Ru2SixOy.

Men för att veta att man faktiskt lyckats i labbet måste man verifiera det – steg tre. Till sin hjälp hade forskarna sveptransmissionselektronmikroskopet Arwen vid Linköpings universitet. Det kan undersöka materialets struktur ner på atomnivå. I Arwen finns även möjligheten att undersöka vilka atomer ett material är uppbyggt av med hjälp av så kallad spektroskopi.

Jonas Björk.
Jonas Björk, universitetslektor vid IFM.Fotograf: Thor Balkhed

– Vi kunde bekräfta att vår teoretiska modell fungerade väl och att det resulterande materialet bestod av de rätta atomerna. Efter exfolieringen liknade bilderna på materialet sidorna i en bok. Det är fantastiskt att teorin kunde omsättas i praktiken och att vi därmed utökat konceptet med kemisk exfoliering till fler materialfamiljer än MXener, säger Jonas Björk, universitetslektor vid avdelningen för materialdesign.

Många tillämpningar

Forskarnas upptäckt innebär att många fler 2D-material med unika egenskaper kan skapas. De i sin tur kan lägga grunden till en uppsjö teknologiska tillämpningar. Nästa steg för forskarna är att utforska ytterligare potentiella grundmaterial och skala upp sina försök. Johanna Rosén menar att framtida tillämpningar är nästintill oändliga.

Stor maskin (Elektronmikroskopet Arwen).
I elektronmikroskopet Arwen kan forskarna studera material ner på atomnivå.Fotograf: Olov Planthaber
– 2D-material generellt sett har visat stor potential för oerhört många tillämpningar. Man kan tänka sig att fånga in koldioxid eller rena vatten till exempel. Nu handlar det om att skala upp och dessutom göra det på ett hållbart sätt, säger hon.

Studien finansierades av Knut och Alice Wallenbergs Stiftelse, Wallenberg Initiative Materials Science for Sustainability (WISE), Göran Gustafssons stiftelse för naturvetenskaplig och medicinsk forskning, Stiftelsen för strategisk forskning, Europeiska unionen, Vetenskapsrådet samt via den svenska regeringens strategiska satsning på nya funktionella material, AFM, vid Linköpings universitet.

Artikeln: Two-dimensional materials by large-scale computations and chemical exfoliation of layered solids; Jonas Björk, Jie Zhou, Per O. Å. Persson och Johanna Rosen; Science 2024. Publicerad online 15 mars 2024. DOI: 10.1126/science.adj6556

Person håller en liten svart skiva med pincett framför ansiktet.
I en film på endast en millimeter kan miljontals lager av 2D material finnas vilket ger förutsättningen för helt nya typer av tillämpningar.Fotograf: Olov Planthaber

Kontakt

Materialforskning på högsta nivå

Organisation

Senaste nytt från LiU

Manlig person på stadsgata.

Förmånsbilar leder till fler och större fordon

När bensinpriset skjuter i höjden så är det medelinkomsttagare som först ändrar beteende. Det visar en landsomfattande studie vid LiU och VTI. Forskning visar även att skatterabatten på förmånsbilar leder till ökat bilinnehav samt större bilar.

Forskare diskuterar i labbet.

LiU Composite Lab öppnar dörrarna för avancerad materialforskning

Här ska forskning på nya material inom till exempel kolfiber, polymerer och komposit pågå i samverkan med näringslivet, forskningsinstitut, andra lärosäten och studenter. LiU Composite Lab är ett nyetablerat laboratorium, våren 2025.

Kvinnlig forskare och buss.

Forskning ska spara pengar och miljö i kollektivtrafiken

Är bussbiljetten för dyr? Det kan bero på att de offentliga upphandlingarna inom kollektivtrafiken ställer allt högre krav på entreprenörerna. I ett fyraårigt projekt ska LiU-forskare studera hur upphandlingen kan bli mer cirkulär.