Det är kanske mindre känt för många att den finns en komplementär beskrivning, som lägger fokus på funktioner från objektet till de reella (eller komplexa) talen. Det är kanske något överraskande att om man känner till alla sådana funktioner, så bestämmer det faktiskt i många fall hur det geometriska objektet ser ut. Dessa funktioner bildar en algebra (dvs man kan addera och multiplicera funktioner och få en ny funktion), och det är möjligt att hitta en algebraisk beskrivning av de flesta geometriska begrepp och storheter.
Det ovanstående öppnar upp för en mer algebraisk syn på geometri. Spelar det roll att den algebra man undersöker kommer från ett geometriskt objekt? Kan vi studera "geometri" ändå? Vi vänder på problemet och frågar oss om det går att associera ett geometriskt objekt till varje algebra? Algebraisk geometri är ett ämnesområde som studerar dessa frågeställningar, och under 1900-talet har det skett en fantastisk utveckling som har lett till många kraftfulla matematiska verktyg och resultat.
Det finns geometriska objekt för vilka man inte kan hitta tillräckligt många intressanta funktioner för att kunna säga något användbart om objektet. Det visar sig dock att om man tillåter funktionerna att vara operatorvärda istället för reellvärda så öppnar sig en ny värld där det finns större möjligheter att studera objektets struktur. Detta "trick" har sitt pris: multiplikation av funktioner är inte längre kommutativt, dvs att ordningen i vilken man multiplicerar funktionerna spelar roll. Detta kommer sig av att multiplikation av operatorer har denna egenskap. Resultatet är att man måste försöka förstå en geometri som är "icke-kommutativ". Det kanske är överraskande att man över huvud taget kan studera icke-kommutativa algebror med ett geometriskt angreppssätt, men i själva verket går det att formulera en hel del av den klassiska geometrin för icke-kommutativa algebror. Till exempel så har man i så kallade C*-algebror hittat en mycket kraftfull generalisering av topologi till icke-kommutativa algebror, som har många tillämpningar inom matematiken.
Populärvetenskapligt om icke-kommutativ geometri
Sedan början av 1900-talet har fysiker försökt sammanföra de två framgångsrika teorierna kvantmekanik och relativitetsteori. Hur det ska göras är en öppen fråga, men vi måste förmodligen ändra vår syn på rum och tid helt och införa så kallad icke-kommutativ geometri.
Under Populärvetenskapliga veckan 2019 på Linköpings universitet gav jag en föreläsning om ämnet under rubriken "Matematik och universums innersta struktur". Föreläsningen finns att se nedan via UR Play (Utbildningsradion) för den som är intresserad.