05 mars 2018

Klas Tybrandt, forskningsledare vid Laboratoriet för organisk elektronik, har tagit fram en ny och stabil metod att mäta neurala signaler under lång tid. Tekniken är baserad på ett nytt elastiskt material som är biokompatibelt och som behåller hög elektrisk ledningsförmåga även när det töjs till sin dubbla längd.

Den nya materialtekniken är framtagen i ett samarbete med forskarkollegor i Zürich och New York och presenteras i en artikel i den ansedda vetenskapliga tidskriften Advanced Materials.

Kopplingen mellan elektronik och nervceller är av avgörande betydelse, såväl för att vi ska kunna samla in information om cellernas signalering som för att diagnosticera och behandla neurologiska störningar och sjukdomar, som exempelvis epilepsi.

Långvariga och stabila kopplingar som inte skadar nervceller eller vävnad är mycket svårt att åstadkomma eftersom de båda systemen, människans mjuka och elastiska vävnad respektive den hårda elektroniken, är så olika rent mekaniskt.

– Eftersom mänsklig vävnad är elastisk och rör sig kommer det att uppstå skador och inflammationer i kontaktytan med den stela elektroniken. Förutom att det skadar vävnaden så dämpar det också ut nervsignalerna, säger Klas Tybrandt, forskningsledare för området Mjuk elektronik, vid Laboratoriet för organisk elektronik, Linköpings universitet, Campus Norrköping.

Nytt töjbart material

Klas Tybrandt har nu tagit fram ett nytt elektriskt ledande material som är mjukt som mänsklig vävnad och som kan töjas till sin dubbla längd. Materialet består av tunna guldbelagda nanotrådar i titanoxid, inbäddade i silikongummi. Materialet är biokompatibelt - kan vara i kontakt med kroppen - och ledningsförmågan är stabil över tiden.

– Mikrofabrikation av mjuka elektriskt ledande kompositmaterial har många utmaningar. Vi har tagit fram en process för att tillverka de små elektroderna som samtidigt bevarar materialens biokompabilitet. Processen är också materialsnål, vilket gör att vi kan arbeta med ett relativt dyrt material som guld till en låg kostnad, säger Klas Tybrandt.
Elektroderna är 50 µm stora och placerade på ett avstånd av 200 µm från varandra. Vid tillverkningen får man plats med 32 elektroder på en mycket liten yta. Hela proben på bilden är 3,2 mm bred och 80 µm tjock.

De små och mjuka elektroderna är framtagna vid Linköpings universitet och ETH Zürich och forskarkollegor vid New York University och Columbia University har sedan implanterat dem i hjärnan på råttor. Under tre månader har forskarna sedan kunnat samla in signaler av hög kvalitet från de fritt rörliga råttorna. Försöken har gjorts efter etiska tillstånd och under det strikta regelverk som gäller för djurförsök.

Intressanta tillämpningar

– När cellerna i hjärnan skickar ut signaler bildas en spänning som elektroderna fångar upp och skickar vidare via en liten förstärkare. Vi kan också se från vilka av elektroderna signalerna kommer, det vill säga var i hjärnan signalerna har sitt ursprung. Denna typ av spatiotemporal information är viktig för framtida tillämpningar. Förhoppningen är att vi ska kunna se var exempelvis signalen som orsakar ett epileptiskt anfall startar, en förutsättning för att kunna behandla framtida anfall. Ett annat användningsområde är hjärna-maskin-gränssnitt där framtida teknik och proteser kan styras med nervsignaler. Det finns även en rad intressanta tillämpningar mot nervsystemet i kroppen och dess reglering av olika organ, säger Klas Tybrandt.

Genombrottet ligger till grund för forskningsområdet Mjuk elektronik - Soft Electronics, som nu byggs upp vid Linköpings universitet, med Klas Tybrandt som forskningsledare.

Artikeln:
High-Density Stretchable Electrode Grids for Chronic Neural Recording, Klas Tybrandt, Dion Khodagholy, Bernd Dielacher, Flurin Stauffer, Aline F. Renz, György Buzsáki, and János Vörös, Advanced Materials 2018. DOI: 10.1002/adma.201706520


Video


Kontakt

Mjuk elektronik

Fler nyheter från Laboratoriet för organisk elektronik

Jontronisk pump i tunna blodkärl.

Effektivare cancerbehandling med jontronisk pump

När låga doser av cancerläkemedel tillförs kontinuerligt nära elakartade hjärntumörer med så kallad jontronik minskar cancercelltillväxten drastiskt. Det har forskare vid LiU och det Medicinska universitetet i Graz visat.

Glasskiva med droppe belyst underifrån.

Nästa generations hållbara elektronik dopas med luft

Forskare vid LiU har utvecklat en ny metod där organiska halvledare kan bli mer ledande med hjälp av luft som störämne. Enligt forskarna är det ett stort steg mot framtidens billiga och hållbara organiska halvledare.

Knappbatteri på finger.

Miljövänligt och billigt batteri för låginkomstländer

Ett batteri gjort av zink och lignin som kan användas över 8000 gånger. Det har forskare vid LiU utvecklat med visionen att det billiga och hållbara batteriet ska kunna användas i länder där tillgången på elektricitet är begränsad.

Senaste nytt från LiU

Serverrum,data på svart skärm.

Maskinpsykologi – en brygga till generell AI

AI som är lika intelligent som människor kan bli möjlig tack vare psykologiska inlärningsmodeller, kombinerat med vissa typer av AI. Det menar Robert Johansson som i sin avhandling har utvecklat begreppet maskinpsykologi.

Forskning för hållbar framtid får nära 20 miljoner i bidrag

Ett oväntat samarbete mellan materialvetenskap och beteendevetenskap. Utveckling av bättre tjänster för att hantera klimatförändringarna. Det är två forskningsprojekt vid LiU som får stora stöd från Marianne och Marcus Wallenbergs stiftelse.

Innovativ idé för effektivare cancerbehandlingar prisas

Lisa Menacher har tilldelats Christer Giléns stipendium 2024 inom området statistik och maskininlärning för sin masteruppsats. Hon har använt maskininlärning i ett försök att göra val av cancerbehandling mer effektivt.