05 mars 2018

Klas Tybrandt, forskningsledare vid Laboratoriet för organisk elektronik, har tagit fram en ny och stabil metod att mäta neurala signaler under lång tid. Tekniken är baserad på ett nytt elastiskt material som är biokompatibelt och som behåller hög elektrisk ledningsförmåga även när det töjs till sin dubbla längd.

Den nya materialtekniken är framtagen i ett samarbete med forskarkollegor i Zürich och New York och presenteras i en artikel i den ansedda vetenskapliga tidskriften Advanced Materials.

Kopplingen mellan elektronik och nervceller är av avgörande betydelse, såväl för att vi ska kunna samla in information om cellernas signalering som för att diagnosticera och behandla neurologiska störningar och sjukdomar, som exempelvis epilepsi.

Långvariga och stabila kopplingar som inte skadar nervceller eller vävnad är mycket svårt att åstadkomma eftersom de båda systemen, människans mjuka och elastiska vävnad respektive den hårda elektroniken, är så olika rent mekaniskt.

– Eftersom mänsklig vävnad är elastisk och rör sig kommer det att uppstå skador och inflammationer i kontaktytan med den stela elektroniken. Förutom att det skadar vävnaden så dämpar det också ut nervsignalerna, säger Klas Tybrandt, forskningsledare för området Mjuk elektronik, vid Laboratoriet för organisk elektronik, Linköpings universitet, Campus Norrköping.

Nytt töjbart material

Klas Tybrandt har nu tagit fram ett nytt elektriskt ledande material som är mjukt som mänsklig vävnad och som kan töjas till sin dubbla längd. Materialet består av tunna guldbelagda nanotrådar i titanoxid, inbäddade i silikongummi. Materialet är biokompatibelt - kan vara i kontakt med kroppen - och ledningsförmågan är stabil över tiden.

– Mikrofabrikation av mjuka elektriskt ledande kompositmaterial har många utmaningar. Vi har tagit fram en process för att tillverka de små elektroderna som samtidigt bevarar materialens biokompabilitet. Processen är också materialsnål, vilket gör att vi kan arbeta med ett relativt dyrt material som guld till en låg kostnad, säger Klas Tybrandt.
Elektroderna är 50 µm stora och placerade på ett avstånd av 200 µm från varandra. Vid tillverkningen får man plats med 32 elektroder på en mycket liten yta. Hela proben på bilden är 3,2 mm bred och 80 µm tjock.

De små och mjuka elektroderna är framtagna vid Linköpings universitet och ETH Zürich och forskarkollegor vid New York University och Columbia University har sedan implanterat dem i hjärnan på råttor. Under tre månader har forskarna sedan kunnat samla in signaler av hög kvalitet från de fritt rörliga råttorna. Försöken har gjorts efter etiska tillstånd och under det strikta regelverk som gäller för djurförsök.

Intressanta tillämpningar

– När cellerna i hjärnan skickar ut signaler bildas en spänning som elektroderna fångar upp och skickar vidare via en liten förstärkare. Vi kan också se från vilka av elektroderna signalerna kommer, det vill säga var i hjärnan signalerna har sitt ursprung. Denna typ av spatiotemporal information är viktig för framtida tillämpningar. Förhoppningen är att vi ska kunna se var exempelvis signalen som orsakar ett epileptiskt anfall startar, en förutsättning för att kunna behandla framtida anfall. Ett annat användningsområde är hjärna-maskin-gränssnitt där framtida teknik och proteser kan styras med nervsignaler. Det finns även en rad intressanta tillämpningar mot nervsystemet i kroppen och dess reglering av olika organ, säger Klas Tybrandt.

Genombrottet ligger till grund för forskningsområdet Mjuk elektronik - Soft Electronics, som nu byggs upp vid Linköpings universitet, med Klas Tybrandt som forskningsledare.

Artikeln:
High-Density Stretchable Electrode Grids for Chronic Neural Recording, Klas Tybrandt, Dion Khodagholy, Bernd Dielacher, Flurin Stauffer, Aline F. Renz, György Buzsáki, and János Vörös, Advanced Materials 2018. DOI: 10.1002/adma.201706520


Video


Kontakt

Mjuk elektronik

Fler nyheter från Laboratoriet för organisk elektronik

Porträtt av Magnus Berggren, professor och chef på Laboratoriet för organisk elektronik

Bromsa hjärnans sjukdomar med elektroniska mediciner

Tänk dig en framtid där det finns effektiv behandling mot nervsystemets och hjärnans sjukdomar. Magnus Berggren forskar om en helt ny typ av mediciner mot alzheimer, parkinson, ALS och cancer.

Person i skyddskläder vid ett mikroskop.

Enskild cell kan kopplas till elektroder av plast

Forskare vid LiU har lyckats skapa en nära koppling mellan enskilda celler och organisk elektronik. Studien lägger grunden för att på sikt kunna behandla bland annat neurologiska sjukdomar med mycket hög precision.

Jontronisk pump i tunna blodkärl.

Effektivare cancerbehandling med jontronisk pump

När låga doser av cancerläkemedel tillförs kontinuerligt nära elakartade hjärntumörer med så kallad jontronik minskar cancercelltillväxten drastiskt. Det har forskare vid LiU och det Medicinska universitetet i Graz visat.

Senaste nytt från LiU

Manlig forskare i campusmiljö.

Influencers behöver sin frihet i ny digital industri

Influencers behöver en viss frihet för att fungera, även om deras jobb sker i samarbete med något varumärke. Sociala medier utgör en ny typ av industri, men i utvecklingen av den är det viktigt att tänka på användarnas välmående

Från studentliv till framgång

Niclas Söör sög ut det göttigaste ur studentlivet vid LiU. Det formade karriären. Här fick han idén till Dospace, ett slags kontorshotell med nära 1 400 medlemmar på elva platser i Sverige.

Många studenter arbetar med att utveckla och finslipa sina egenbyggda bilar inför tävlingen

Studenter bygger och tävlar med egna fordon

Studenter på Linköpings universitet tar sig an en ingenjörsutmaning där de konstruerar och tävlar med egna fordon. Genom praktisk problemlösning och teknisk innovation sätts deras kunskaper på prov.